Contattaci

Fisica

Ai teorici dell’inflazione cosmica la medaglia Dirac 2019 dell’ICTP

Il riconoscimento istituito dal Centro Internazionale di Fisica Teorica “Abdus Salam” di Trieste è andato a Viatcheslav Mukhanov, Alexei Starobinsky e Rashid Sunyaev

Pubblicato

il

La medaglia e il premio Dirac dell’ICTP di Trieste di quest’anno sono stati assegnati a tre fisici la cui ricerca ha avuto un profondo impatto sulla cosmologia moderna. Viatcheslav Mukhanov (della Ludwig Maximilian University di Monaco), Alexei Starobinsky (del Landau Institute for Theoretical Physics di Mosca) e Rashid Sunyaev (del Max Planck Institute for Astrophysics di Garching in Germania) condividono il riconoscimento per “il loro eccezionale contributo alla fisica della radiazione cosmica di fondo (CMB, dall’inglese “Cosmic Microwave Background”) con implicazioni, confermate dagli esperimenti, che hanno contribuito a trasformare la cosmologia in una disciplina scientifica precisa, combinando la fisica a scala microscopica con la struttura a grande scala dell’universo”.

Tutti e tre i vincitori hanno contribuito durante la loro carriera in maniera significativa alla comprensione dell’Universo primordiale nel contesto della teoria cosmologica dell’inflazione.

Il CMB è una debole radiazione cosmica di fondo che permea tutto lo spazio. Nel modello del Big Bang, il CMB è una radiazione elettromagnetica residua, originata in una fase iniziale dell’universo, che può essere rilevata con un radiotelescopio sufficientemente sensibile. Scoperta per caso nel 1964 da due radioastronomi, Arno Penzias e Robert Wilson, è una delle principali prove della teoria del Big Bang per l’origine dell’universo.

Secondo la teoria cosmologica dell’inflazione, l’universo ha subito un’espansione esponenziale in un tempo estremamente breve, da 10-36 secondi a 10-33 secondi circa dopo la singolarità del Big Bang, detto “epoca dell’inflazione”. A tale fase è seguita un’ulteriore espansione dell’universo, molto più lenta, che continua ancora oggi.

Alexei Starobinsky fu uno dei primi a proporre una teoria dell’inflazione verso la fine degli anni ’70 del secolo scorso che fu poi ulteriormente sviluppata negli anni seguenti, con importanti contributi dagli studi portati avanti da Viatcheslav Mukhanov e da altri negli anni ‘80. Rashid Sunyaev, inoltre, aveva predetto la presenza di picchi acustici nel CMB già negli anni ‘70 e ha poi contribuito largamente agli esperimenti che hanno testato questi modelli. La teoria dell’inflazione è tuttora considerata uno dei contributi più rilevanti all’astrofisica e alla cosmologia moderne poiché non solo spiega molte proprietà dell’universo come lo conosciamo, come ad esempio il fatto che sia uniforme e piatto, ma fornisce anche una teoria per le fluttuazioni primordiali, che nessun altro modello ha ancora spiegato. Nel quadro della relatività generale e della teoria quantistica dei campi, la teoria dell’inflazione descrive queste fluttuazioni come derivanti da effetti quantistici su scala microscopica che hanno effetti macroscopici su scala cosmica, visibili nella formazione della struttura a grande scala dell’universo.

Le previsioni teoriche derivate da questo modello sono state confermate da numerosi esperimenti e hanno contribuito notevolmente alla cosmologia moderna.

“I calcoli sulle perturbazioni della densità primordiale rappresentano uno dei traguardi più belli della fisica teorica, poiché forniscono informazioni importanti sulle nostre origini e lo fanno con uno spettacolare accordo con gli esperimenti”, ha spiegato il direttore dell’ICTP Fernando Quevedo. “Gli importanti contributi apportati a questo campo dai tre vincitori sono in linea con gli alti standard della medaglia Dirac”.

“Il valore del loro lavoro si misura non solo dalla precisione delle loro previsioni” ha aggiunto Ravi Sheth, Staff Associate all’ICTP, “ma anche dal profondo impatto che il loro lavoro – e loro stessi – hanno avuto su intere generazioni di cosmologi.”

Da sinistra verso destra: Mukhanov, Starobinsky, Sunayev

Chi sono i vincitori

Viatcheslav Mukhanov è noto per la teoria dell’origine quantistica della struttura dell’universo. Nel 1981, mentre lavorava nell’Istituto Lebedev di Mosca, Mukhanov, in collaborazione con Gennady Chibisov, ha scoperto il meccanismo per la generazione di perturbazioni scalari della metrica spazio-temporale in un modello di inflazione cosmica inizialmente proposto da Starobinsky. Numerosi esperimenti di misurazione delle fluttuazioni di temperatura del CMB hanno confermato poi la sua previsione teorica che galassie e ammassi di galassie derivino da fluttuazioni quantistiche iniziali. Nel 1985 ha sviluppato ulteriormente un rigoroso formalismo per descrivere le perturbazioni della densità in molti modelli inflazionistici.

Alexei Starobinsky è considerato, insieme ad Alan Guth e Andrei Linde, un pioniere e uno dei principali formalizzatori della teoria dell’inflazione cosmica. Nel 1979 predisse l’esistenza di onde gravitazionali come conseguenza di ciò che successivamente si sarebbe chiamato inflazione.
Starobinsky in seguito propose una specifica versione dell’inflazione cosmica, che è ancora la più perfettamente coerente con le attuali osservazioni. Ha inoltre scritto uno dei primi articoli in cui siano state calcolate le perturbazioni della densità in uno dei più promettenti modelli di inflazione, detto “modello di inflazione slow-roll”. Ha sviluppato infine il formalismo dell’inflazione “stocastica”, un modello di inflazione più realistico rispetto ai precedenti.

Rashid Sunyaev ha portato contributi rivoluzionari ai campi della cosmologia fisica e dell’astrofisica ad alta energia. Nel 1970 predisse, insieme a Yakov Zeldovich, l’esistenza di picchi acustici nel CMB. Questi possono essere visti come gli elementi di un pattern nel cielo del CMB che evidenziano la sua stessa disomogeneità. Hanno inoltre predetto la diminuzione della luminosità del CMB in direzione di densi ammassi di galassie, fenomeno ora noto come effetto Sunyaev-Zeldovich. Questa scoperta rende possibile l’uso degli ammassi di galassie come potente strumento di osservazione cosmologica. È infatti il migliore strumento che abbiamo ancora oggi per misurare l’abbondanza e il movimento degli ammassi di galassie più lontani.

Cos’è la medaglia Dirac

Assegnata per la prima volta nel 1985, la Medaglia Dirac dell’ICTP è nata in onore di P.A.M. Dirac, uno dei più grandi fisici del XX secolo e un fedele amico del Centro. Il premio viene assegnato ogni anno il giorno del compleanno di Dirac, l’8 agosto, a scienziati che hanno dato un contributo significativo alla fisica teorica. La cerimonia di premiazione, durante la quale i tre vincitori terranno dei seminari sul loro lavoro, avrà luogo entro la fine dell’anno.



Licenza Creative Commons




Crediti :

ICTP, le Scienze

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
Clicca per commentare

Leave a Reply

Per commentare puoi anche connetterti tramite:



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Fisica

Come estrarre ossigeno dalla polvere lunare

L’Agenzia spaziale europea è riuscita nell’impresa: ha creato un prototipo di impianto di estrazione dell’ossigeno dalle polveri lunari. Un passo importante per futuri viaggi spaziali e per aumentare la durata della permanenza umana sul satellite

Pubblicato

il

Rappresentazione artistica di una possibile base di attività sulla Luna (foto: Esa)

Ormai è certo: nel 2024 torneremo sulla Luna ed ora è aperta la caccia ai turisti dello spazio che accompagneranno il primo privato cittadino che andrà sulla Luna, il milionario giapponese Yusaku Maezawa. Ma i motivi per studiare la luna e la sua composizione sono tanti e non riguardano solo i viaggi spaziali. L’Agenzia spaziale europea (Esa) ha già pianificato una missione che avrà l’obiettivo di studiare la possibilità di riuscire a estrarre alcuni elementi, come ossigeno e acqua, naturalmente presente nel suolo, o meglio nella regolite, una sorta di polvere che ricopre la Luna. Oggi, l’Esa informa che ha messo a punto un prototipo per estrarre l’ossigeno dalle polveri lunari. Ecco perché è un risultato importante.

Polveri lunari per ottenere ossigeno

La regolite è un materiale granuloso presenti sul suolo lunare – e non solo, si trova anche sulla Terra, su Marte, su altri pianeti, asteroidi e lune. Questo materiale è composto da polveri, detriti, frammenti di rocce e gas, e si è formata in seguito all’impatto di meteoroidi piccoli e spessi, al bombardamento costante di frammenti di materiale celeste. I campioni lunari riportati a terra dalle missioni hanno mostrato che questa polvere è abbondante e per questo sceglierla come candidato per produrre ossigeno potrebbe essere una scelta valida.

Poter ottenere ossigeno dalle polveri lunari potrebbe favorire i futuri viaggi e la nostra permanenza sulla Luna, un tema sempre più attuale. Per questo gli scienziati si sono già messi all’opera e un gruppo guidato dall’università di Glasgow ha recentemente spiegato come procedere.

Un nuovo impianto

Oggi l’Esa annuncia di aver messo a punto un impianto per estrarre l’ossigeno dalle polveri lunari. “Avere la nostra strumentazione ci permette di concentrarci sulla produzione di ossigeno”, commenta Beth Lomax dell’università di Glasgow, “misurandolo con uno spettrometro di massa non appena estratto dal ‘simulante’ di regolite”. Il simulante di regolite è un materiale terrestre che serve per creare un composto quanto più possibile somigliante alla regolite e che è utile per gli esperimenti e per studiare le possibili condizioni di permanenza sulla luna.

L’estrazione dell’ossigeno dalla polvere di Luna

Inizialmente l’ossigeno generato nel processo veniva rilasciato come biossido di carbonio e monossido di carbonio. “Questo significa che i reattori non sono progettati per resistere all’ossigeno stesso”, spiega Lomax, che racconta che gli scienziati hanno riprogettato una nuova versione per avere ossigeno libero da misurare. Il nuovo impianto è anche silenzioso e l’ossigeno viene scaricato in un tubo apposito. Verrà poi accumulato non appena i ricercatori realizzeranno il prossimo aggiornamento delle apparecchiature.

Per ottenere l’ossigeno i ricercatori si sono serviti dell’elettrolisi per separare l’idrogeno e l’ossigeno che compongono una molecola d’acqua. Il tutto avviene attraverso la presenza di cloruro di calcio, che funge da elettrolita, riscaldato a 950 °C. La separazione è avvenuta e l’ossigeno è stato estratto.

“Il processo di produzione lascia dietro di sé un groviglio di metalli diversi”, aggiunge Alexandre Meurisse, ricercatore dell’Esa, “e questa è un’altra linea di ricerca importante per vedere quali sono le leghe più utili che potrebbero essere prodotte a partire dal materiale e quali applicazioni potrebbero avere”. La precisa combinazione di metalli, specifica l’esperto, potrebbe dipendere dal punto in cui vengono raccolte le polveri lunari, dato che ci potrebbero essere importanti differenze.

Verso la Luna e Marte

L’obiettivo finale, concludono i ricercatori, potrebbe essere realizzare un impianto simile direttamente sulla Luna, così da avere direttamente ossigeno disponibile. “Stiamo spostando il nostro approccio ingegneristico verso la possibilità di un uso sistematico delle risorse lunari in situ”, conclude Tommaso Ghidini dell’Esa, “per fornire un metodo operativo ideale e tecnologie essenziali come questa, affinché sia possibile la presenza umana sulla Luna e un giorno forse anche su Marte.



Licenza Creative Commons




Crediti :

wired

Continua a leggere

Fisica

Arriva il primo “robot vivente”, creato con cellule staminali

Deriva da cellule staminali di rana, il nuovo robot vivente non è né una macchine tradizionale né una nuova specie animale. Ecco cos’è e perché potrebbe essere molto utile in medicina e per combattere l’inquinamento

Pubblicato

il

In futuro i robot saranno sempre più spesso ispirati alle nostre caratteristiche biologiche. Ma oggi il mondo delle tecnologie ci stupisce con una proposta finora inedita: un gruppo di ricerca ha creato un nuovo prototipo che non solo prende ispirazione dalla biologia ma che  è interamente costituito da materiale biologico. I creatori, dell’università del Vermont e di Tuft, parlano per questo di robot vivente, primo nel suo genere, una macchina minuscola, per niente somigliante all’idea che abbiamo di robot – quella dell’automa. Le applicazioni potrebbero riguardare diversi campi, dalla ricerca delle contaminazioni radioattive ad usi clinici. I risultati sono pubblicati su Proceedings of the National Academy of Sciences.

Negli anni scorsi ci sono stati dei tentativi anche di successo di creare organismi viventi semi-sintetici. In questo caso parliamo di un oggetto molto diversi, come spiegano gli scienziati, che hanno progettato e realizzato la “prima macchina biologica interamente messa su a partire dal nulla”, o meglio da cellule. I ricercatori la hanno chiamata xenobot perché deriva dall’elaborazione di cellule staminali della rana africana Xenopus laevi, spesso utilizzata come modello animale nella ricerca in biologia. “Il dna dell’organismo realizzato è al 100% quello della rana”, specifica Michael Levin, uno dei due coordinatori dello studio, ricercatore all’università di Tuft, “ma non è una rana”“Non sono né robot tradizionali né nuove specie animali”, sottolineano i ricercatori, che chiariscono che si tratta di nuova classe di artefatti, oggetti artificiali che sono organismi viventi e programmabili.

Gli scienziati hanno progettato i nuovi robot con i supercomputer dell’università del Vermont e poi li hanno assemblati e testati all’università Tuft. Prima hanno prelevato le cellule staminali dagli embrioni di rana, separate in singole cellule e fatte crescere in laboratorio, in una sorta di incubatrice per farle moltiplicare e differenziare in tessuti diversi. Successivamente le hanno tagliate e aggiuntate attraverso l’uso di un microscopio per ottenere il design desiderato, selezionato col computer. In questo modo, si sono formate delle cellule dalla forma inedita in natura che hanno cominciato a funzionare e lavorare insieme. Qui il video.

La loro forma è quasi sferica. La pelle ha un’architettura abbastanza statica, mentre il muscolo cardiaco è più attivo: le sue contrazioni sono tali da generare movimenti ordinati, che seguono quanto scelto in base alla progettazione del computer. In pratica si tratta di materia vivente assemblata e programmata per lavorare in un determinato modo, selezionato dagli autori.

I risultati mostrano che questi organismi si muovono in modo coerente e che possono spostarsi e sondare l’ambiente acquoso in cui si trovano per giorni o settimane. Tuttavia, anche loro falliscono: se si ribaltano somigliano a coleotteri capovolti che non sono più in grado di muoversi. Inoltre, gli autori hanno osservato che si spostano creando un cerchio e alcuni sono stati progettati per creare una struttura con un buco al centro. “È un passo avanti verso l’uso di organismi creati dal computer per l’invio intelligente di farmaci”, ha spiegato Joshua Bongard dell’università del Vermont, che sottolinea che sono completamente biodegradabili e una volta aver assolto al loro compito, dopo una settimana, sono solo cellule di pelle morta.

Ma molti sono preoccupati dei possibili sviluppi. “Questa paura non è irragionevole”, aggiunge Levin. E “questo studio fornisce un contributo diretto per comprendere meglio ciò di cui le persone hanno paura, ovvero le conseguenze indesiderate”. Se inizieremo a manipolare sistemi complessi che non conosciamo, spiega l’esperto, potremmo avere esiti inattesi e non desiderati. Per questo capire in che modo la complessità emerge da sistemi semplici sarà una sfida fondamentale del futuro.



Licenza Creative Commons




Continua a leggere

Fisica

Un acceleratore di particelle in miniatura

Dimostrata la possibilità di accelerare fasci di elettroni in un canale di dimensioni nanoscopiche ricavato in un chip al silicio. Questo prototipo potrebbe servire da base per lo sviluppo di nuove apparecchiature per la radioterapia dei tumori

Pubblicato

il

Immagine al microscopio della sezione del chip al silicio attraversato dagli elettroni (©Neil Sapra)

Agli albori del calcolo automatico i computer occupavano un’intera stanza. Ora una loro versione semplificata e miniaturizzata può stare addirittura nel palmo di una mano. Gli acceleratori di particelle, che attualmente occupano tunnel lunghi chilometri, potrebbero in futuro seguire la stessa linea di sviluppo, secondo uno studio pubblicato su “Science” da Jelena Vuckovic, della Stanford University, e colleghi. Nell’ambito del progetto Accelerator on a Chip International Program (ACHIP), questi ricercatori hanno realizzato un acceleratore di particelle in miniatura che potrebbe aprire la strada a diverse applicazioni, tra cui nuovi metodi per trattare i tumori con la radioterapia.

L’idea è nata considerando il principio di funzionamento di un acceleratore convenzionale: in questa macchina i fasci di particelle corrono in tubi a vuoto per alcuni chilometri, con impulsi di microonde che li accelerano sempre di più, fino a raggiungere velocità prossime a quella della luce.

Le microonde hanno una lunghezza d’onda dell’ordine di dieci centimetri. Usando impulsi di radiazione diversa, per esempio nello spettro infrarosso, con lunghezze d’onda molto più piccole delle microonde, si può in linea di principio accelerare le particelle su distanze assai più piccole. Il problema è che anche che le dimensioni fisiche del supporto devono essere delle stesse dimensioni, ponendo una sfida d’ingegnerizzazione non indifferente.

Vuckovic e colleghi hanno ricavato una cavità di dimensioni nanoscopiche all’interno di un chip al silicio, sigillandolo poi in una camera a vuoto. Successivamente hanno sparato un fascio di elettroni in questa cavità, accelerandoli con impulsi di luce infrarossa, a cui il silicio è trasparente.

Il dispositivo è ancora allo stato di prototipo. Gli autori però sostengono che le tecniche di progettazione e fabbricazione sono applicabili anche per altre dimensioni, e possono fornire fasci di particelle adatti a esperimenti in chimica, biologia e scienza dei materiali, dove non è richiesta la potenza di un enorme acceleratore.

“Gli acceleratori più grandi in assoluto sono come potenti telescopi. Ce ne sono solo pochi al mondo”, ha spiegato Vuckovic. “Vogliamo miniaturizzare la tecnologia dell’acceleratore in modo da renderla uno strumento di ricerca più accessibile.”

Ma l’applicazione più probabile è nel campo delle apparecchiature medicali, soprattutto in campo oncologico. Attualmente, le apparecchiature mediche per produrre raggi X occupano una stanza e forniscono una radiazione difficile da concentrare sui tumori, richiedendo ai pazienti di indossare elementi di piombo per ridurre al minimo i danni collaterali.

“In questo articolo iniziamo a mostrare come si potrebbe inviare il fascio di elettroni direttamente su un tumore, lasciando inalterato il tessuto sano”, ha sottolineato Robert Byer, della Stanford University, che guida il progetto ACHIP.



Licenza Creative Commons




Crediti :

le Scienze

Continua a leggere

Chi Siamo

Newsletter

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu [...]

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom [...]

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du [...]

Nature, Published online: 23 January 2020; doi:10.1038/d41586-020-00154-wUpdates on the respiratory [...]

Nature, Published online: 23 January 2020; doi:10.1038/d41586-020-00173-7Researchers have started an [...]

Nature, Published online: 23 January 2020; doi:10.1038/d41586-020-00180-8One genetic analysis sugges [...]

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio [...]

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a [...]

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur [...]

Sismografo Live

Sismi Italia tempo reale

Terremoti Importanti

Aggiornato Ven 24 Gen 08:26:12 (GMT+0200)

NASA TV

SPACE X

al

I più letti