Contattaci

Fisica

Buco nero da record, nuova scoperta

Pubblicato

il

Un buco nero supermassiccio, con una massa 17mld di volte più grande del Sole. La diretta della NASA

rovato un buco nero supermassiccio in una galassia non lontana dalla nostra. La scoperta mostra che questi oggetti celesti sono forse più diffusi del previsto: è quanto afferma il gruppo internazionale di astronomi che ha firmato lo studio pubblicato su Nature. Il buco nero gigante ha una massa di 17 miliardi di volte quella del sole ed è situato al centro della galassia NGC 1600. La scoperta è ad opera dei ricercatori dell’Università della California a Berkeley nell’ambito del Progetto MASSIVE, grazie ai dati di due gioielli della tecnologia terrestre: l’Hubble Space Telescope della Nasa e il Gemini Telescope alle Hawaii.

 

NGC 1600 è una galassia ellittica nella costellazione di Eridano

Si individua 2 gradi a SSW della stella ν Eridani; si tratta di una galassia ellittica gigante, la cui luminosità ci appare debole solo a causa della grandissima distanza. È visibile con un telescopio da 150mm di apertura come una macchia ovaleggiante, estesa in senso nord-sud; strumenti più potenti consentono di individuare nei suoi dintorni numerose altre galassie minori, come NGC 1601 e NGC 1603. La distanza dalla Via Lattea è stimata sui 220 milioni di anni-luce.

 

La campagna osservativa MASSIVE, iniziata nel 2014, è stata promossa e sostenuta dalla National Science Foundation e ha lo scopo di ottenere stime di massa per stelle, materia oscura e buchi neri centrali appartenenti a 100 galassie massicce e vicine. Più precisamente, si occupa di galassie con più di 300 miliardi di masse solari, ed entro 350 milioni di anni luce di distanza dalla Terra.

Un buco nero supermassiccio (o supermassivo) è il più grande tipo di buco nero, con una massa milioni o miliardi di volte superiore a quella del Sole. Si ritiene che quasi tutte le galassie, inclusa la nostra Via Lattea, contengano un buco nero supermassiccio al loro centro.

buco nero

Il buco nero supergigante – ha commentato la studiosa Chung-Pei Ma, professoressa presso l’Università della California, nonché a capo della campagna osservativa MASSIVE- si trova in una zona scarsamente popolata, al centro di una galassia ellittica situata nei pressi di un piccolo gruppo di 20 galassie“. Il dubbio che assale la ricercatrice e il suo team è che fino ad ora buchi neri di questa dimensione sono stati trovati solo al centro di grandi galassie e in aree dell’Universo molto popolate.

buco nero

L’astronoma Chung-Pei Ma dell’Università di Berkeley

Quando due galassie si fondono – ha spiegato Ma – i loro buchi neri centrali si stabilizzano nel nucleo della nuova galassia e orbitano uno intorno all’altro. Stelle cadenti vicino al buco nero binario, a seconda della loro velocità e la traiettoria, possono effettivamente rubare moto dalla coppia vorticosa e raccogliere abbastanza velocità per sfuggire dal nucleo della galassia. Questa interazione gravitazionale fa sì che i buchi neri si muovano lentamente avvicinandosi, alla fine fondendosi per formare un buco nero ancora più grande. Il buco nero supermassiccio poi continua a crescere inghiottendo gas incanalato al nucleo da collisioni di galassie”.

buco neroUn aspetto interessante della scoperta è la precisione con cui conosciamo la stima di massa del buco nero di NGC 1600. Mentre quello scoperto nel 2011 all’interno della galassia NGC 4889, nell’ammasso della Chioma, aveva un limite superiore di 21 miliardi di masse solari e un limite inferiore di 3 miliardi di masse solari, la stima per NGC 1600 è molto più precisa, con un intervallo di masse possibili tra 15.5 e 18.5 miliardi di masse solari.

È interessante inoltre notare che le stelle in rotazione attorno al nucleo centrale di NGC 1600 si muovono come se il buco nero appartenesse a un sistema binario. I sistemi di questo tipo sono piuttosto comuni nelle galassie di grandi dimensioni, poiché si ritiene che le galassie crescano attraverso fusioni successive con altre galassie, ognuna delle quali ospita molto probabilmente un buco centrale. Questi buchi neri verrebbero quindi fusi all’interno del nucleo di una nuova e più grande galassia in seguito ad una reciproca danza orbitale, dando luogo a un buco nero più grande ed emettendo onde gravitazionali.

 

I buchi neri supermassicci hanno alcune interessanti proprietà che li distinguono dai loro simili di minori dimensioni:

La densità media (intesa come il rapporto tra massa del buco nero e volume racchiuso entro l’orizzonte degli eventi) di un buco nero supermassiccio può essere uguale (per buchi neri di 1,81×108 masse solari) o anche inferiore a quella dell’acqua (per buchi neri di massa maggiore di 1,81×108 masse solari).[5] Infatti, tenendo conto che il raggio di Schwarzschild di un buco nero aumenta linearmente con la massa e che il volume di un oggetto sferico, come l’orizzonte degli eventi di un buco nero non rotante, è proporzionale al cubo del suo raggio, la densità del buco nero è di conseguenza inversamente proporzionale al quadrato della sua massa; di conseguenza, la densità di un buco nero cala velocemente all’aumentare delle sue dimensioni, e quindi i buchi neri supermassicci hanno densità più basse di quelli più piccoli.

Le grandi forze di marea tipiche dei piccoli buchi neri sono molto deboli in prossimità dell’orizzonte degli eventi: poiché la singolarità gravitazionale è così lontana dall’orizzonte, un ipotetico astronauta che viaggiasse verso il centro del buco nero non sperimenterebbe forze di marea significative prima di arrivare molto all’interno del buco.

 

NASA – Behemoth Black Hole Found in an Unlikely Place

Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe. The observations, made by NASA’s Hubble Space Telescope and the Gemini Telescope in Hawaii, may indicate that these monster objects may be more common than once thought.

Until now, the biggest supermassive black holes – those roughly 10 billion times the mass of our sun – have been found at the cores of very large galaxies in regions of the universe packed with other large galaxies. In fact, the current record holder tips the scale at 21 billion suns and resides in the crowded Coma galaxy cluster that consists of over 1,000 galaxies… continue

Si pensa che molte, se non tutte le galassie ospitino un buco nero supermassiccio nel loro centro. Le misure doppler della velocità della materia (sia stellare che gassosa) presente al centro delle galassie vicine hanno rivelato dei moti di rotazione molto veloci, possibili solo con una grande concentrazione di materia al centro. Al momento, l’unico oggetto conosciuto che può concentrare abbastanza materia in uno spazio così piccolo è un buco nero. Nelle galassie attive più lontane si sospetta che la larghezza delle linee spettrali sia correlata con la massa del buco nero centrale.

Una spettacolare evidenza riguardante la presenza di uno di questi buchi neri di massa estremamente grande al centro della nostra galassia è stata recentemente ottenuta seguendo direttamente l’orbita ellittica di una stella, dal cui periodo si può misurare la massa del presunto buco nero con precisione estrema.

Tali buchi neri supermassicci posti al centro di molte galassie sono sospettati di essere il “motore” di galassie attive come le galassie di Seyfert e i quasar.

Tali buchi neri possono tuttavia svolgere un ruolo rilevante nella dinamica dei sistemi galattici anche in molti altri casi, come mostra la recente scoperta di una correlazione tra la massa del buco nero centrale e la dispersione di velocità delle stelle nel bulge di numerose galassie a spirale.

 

 

 

Crediti :

Dire Giovani

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
1 Commento

1 Commento

  1. Andrea Milanesi

    10 Aprile 2016 at 17:26

    ……………. (_)
    ……………(___)
    ……………(___)
    ……………(___)
    ……………(___)
    ./_____/__/—-__/_____/
    .______°_¤ —- ¤_°_/____/
    …………. __°__ /
    …………..|_°_/|
    …………..[|_/|]
    …………..[|[¤]|]
    …………..[|;¤;|]
    …………..[;;¤;;]
    ………….;[|;¤]|]
    …………;;[|;¤]|]-
    ………..;;;[|[o]|]–
    ……….;;;;[|[o]|]—
    ………;;;;;[|[o]|]|—|
    ………;;;;;[|[o]|]|—|
    ……….;;;;[|[o]|/—/
    ………..;;;[|[o]/—/
    …………;;[|[]/—/
    ………….;[|[/—/
    …………..[|/—/
    ……………/—/
    …………../—/|]
    …………./—/]|];
    …………/—/#]|];;
    ………..|—|[#]|];;;
    ………..|—|[#]|];;;
    …………–|[#]|];;
    ………….-|[#]|];
    …………..|[#]|]
    ……………\#//
    ……………../

Leave a Reply

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Fisica

Le acque radioattive di Fukushima

Il rilascio delle acque di bonifica radioattive in alto mare è la soluzione più sicura. Non modificherebbe di fatto i livelli naturali di radioattività e non porterebbe a un accumulo di quantità significative di elementi radioattivi nei pesci. I pescatori giapponesi temono però la diffidenza dei consumatori

Pubblicato

il

Cisterne di stoccaggio delle acque radioattive a Fukushima (Gill Tudor/IAEA)

“Molto rumore per nulla.” Così il fisico Marco Casolino, ricercatore all’INFN all’Università di Roma Tor Vergata che da anni collabora con l’istituto RIKEN in Giappone, commenta il vespaio sollevato dal ministro per l’ambiente giapponese, Yoshiaki Harada, quando ha dichiarato che l’acqua radioattiva stoccata a Fukushima sarà dispersa in mare. Un clamore immotivato per due motivi.
Innanzitutto il ministro non annunciava una decisione presa, o un piano di smaltimento proposto, ma esprimeva solo una sua opinione. “Ha detto che sta finendo lo spazio per stoccare l’acqua e prima o poi bisognerà smaltirla in mare, cosa che si dice già dal 2013. In realtà però non è stata ancora presa alcuna decisione ufficiale, appunto per paura delle reazioni”, spiega a Le Scienze Casolino, che studia fra l’altro particelle ad alta energia e protezione dalla radiazione spaziale.

Casolino era in Giappone nel 2011 quando il terremoto e il conseguente tsunami hanno distrutto la centrale di Fukushima e ha partecipato alle indagini sulle fuoriuscite radioattive, realizzando anche uno strumento per misurare le radiazioni nel cibo grazie a fondi della Japan Science Foundation. “Inoltre, anche se quell’acqua finirà davvero in mare, la contaminazione sarà irrilevante”, aggiunge.

Ispezione sullo stato dei lavori di bonifica a Fukushima da parte di tecnici della IAEA e della TEPCO (NRA)


L’oggetto del contendere sono oltre un milione di tonnellate di acqua contaminata da trizio (un isotopo radioattivo dell’idrogeno), raccolta in serbatoi vicino alla centrale di Fukushima Daiichi. Per tenere raffreddati i resti dei reattori, in attesa dello smantellamento, bisogna farvi circolare un flusso continuo di acqua, che viene recuperata, purificata da gran parte dei radionuclidi, e riutilizzata. Ma all’acqua pompata si aggiunge quella che si infiltra dal sottosuolo. Una serie di interventi, con barriere sotterranee e sistemi di pompaggio e drenaggio, hanno molto ridotto queste infiltrazioni ma non le hanno eliminate. C’è quindi un surplus di acqua che ogni giorno va eliminato dal circolo e stoccato.

Quest’acqua conserva una certa radioattività perché i sistemi di purificazione eliminano gli isotopi più pericolosi come il cesio-137, ma non il trizio, un isotopo radioattivo dell’idrogeno che entra a far parte dell’acqua stessa e sarebbe molto oneroso da separare.

Stoccare o smaltire
Così, finora si sono accumulate oltre un milione di tonnellate di acqua radioattiva, stoccate in un migliaio di cisterne sul posto, e ogni giorno se ne aggiunge di nuova. Ma lo spazio sta finendo. L’esaurimento, già previsto per il 2020, è stato ritardato al 2022 grazie alla costruzione di nuove cisterne, ma non si può continuare così, se non altro perché in zona i siti stabili, elevati e pianeggianti, che offrono la maggiore sicurezza, stanno finendo.

“E in ogni caso lasciare l’acqua lì non è una buona idea, perché se arrivano nuovi terremoti, cicloni o alluvioni si può disperdere”, spiega Casolino. “È già successo col terreno radioattivo rimosso dalla superficie per decontaminare l’area. L’hanno accatastato in giganteschi sacchi di iuta, ma qualche anno fa è arrivato un tifone che ne ha trascinato via una parte, disperdendolo di nuovo nell’ambiente.”

Perciò, anni fa una task force del Ministero dell’economia giapponese ha esaminato a fondo cinque opzioni per liberarsi dell’acqua: farla evaporare, rilasciare l’idrogeno in atmosfera in forma gassosa, iniettarla negli strati profondi del sottosuolo, conservarla in depositi sotterranei, o diluirla e scaricarla nell’oceano. Nel 2016 quel gruppo di studio ha concluso che per sicurezza, costi e tempi, quest’ultima era la scelta migliore. Un’idea condivisa dall’Agenzia internazionale per l’energia atomica (IAEA), dalla Nuclear Regulation Agency del Ministero dell’ambiente giapponese, e dalla TEPCO (Tokyo Electric Power Company), l’operatore che gestiva l’impianto e ora ne cura lo smantellamento.

Campionamento delle acque di fronte alle coste di Fukushima (Petr Pavlicek/IAEA)


Già due anni fa, peraltro, il direttore della TEPCO, Takashi Kawamura, aveva presentato il riversamento in mare come una decisione già presa, suscitando in patria un allarme analogo a quello dei giorni scorsi e facendo poi una rapida marcia indietro.

Il trizio
I rischi concreti, come si diceva, sono in realtà irrisori. Anche se manca ancora un piano concreto su come procedere allo smaltimento, l’idea è diluire l’acqua per ridurre la radioattività entro standard di sicurezza accettabili – si parla dell’ordine dei 60.000 becquerel (Bq) per litro (un Bq è una disintegrazione di un nucleo al secondo) – e poi riversarla via via nell’oceano, al largo, in tempi che vanno da 5 a una quindicina d’anni.

Sia la quantità complessiva di trizio da smaltire sia le dosi giornaliere previste non superano quelle rilasciate da altri impianti nel loro normale funzionamento. Per esempio, in Francia l’impianto di lavorazione del combustibile esausto di La Hague rilascia ogni anno nella Manica 12.000 miliardi di Bq, circa dieci volte la radioattività di tutto il trizio stoccato a Fukushima. Le massime concentrazioni di trizio rilevate nella zona di La Hague sono state di 7 Bq al litro, e al largo di Fukushima i livelli previsti sono ancora inferiori, con stime intorno a 1 Bq al litro e picchi massimi di pochi Bq al litro.

Questi valori si scostano poco dalla radioattività da trizio già presente nel mare per effetto del fondo naturale e delle varie emissioni umane, e non superano quella di molti corsi d’acqua dolce. “Senza contare tutti gli altri radionuclidi”, aggiunge Casolino.

“Già nel 2013 avevamo calcolato che il cesio-137 e lo stronzio-90 dispersi dall’incidente di Fukushima, pur inquinando molto il mare negli immediati dintorni della centrale, avevano prodotto un aumento del tutto trascurabile della radioattività non appena ci si allontanava un po’. Nei primi 100 chilometri di mare davanti alla costa nord-orientale del Giappone le perdite hanno aggiunto meno di una parte su 100.000 alla radioattività già presente in natura con isotopi come il carbonio-14 e il potassio-40. Su tutto il Pacifico era meno di una parte su 100 milioni.”

La radioattività ora in gioco non solo è molto inferiore, ma riguarda il trizio, che è molto meno pericoloso: all’esterno del corpo è innocuo perché le particelle beta che emette non superano lo strato morto della pelle; quello che beviamo, a differenza di altri radionuclidi, non si concentra nei tessuti ma per lo più viene eliminato con l’acqua. Perciò, anche se la sua radioattività per dimezzarsi (emivita) impiega 12,3 anni, la sua emivita biologica nel corpo è di 10 giorni, come per tutta l’acqua. Infatti la sua tossicità resta incerta e i limiti ammessi nell’acqua potabile sono molto variabili: il più stringente è quello dell’Unione Europea, a 100 Bq al litro, mentre l’Organizzazione mondiale della Sanità consiglia una soglia 100 volte più alta, di 10.000 Bq al litro, e l’Australia ammette oltre 76.000 Bq al litro.

Quanto a livelli di trizio, quindi, l’acqua marina “contaminata” dallo svuotamento delle cisterne di Fukushima sarebbe addirittura potabile anche in Europa.

La vera preoccupazione dei pescatori
Il vero problema non è dunque sanitario o ambientale ma sociale: l’opposizione allo scarico dell’acqua viene soprattutto dalle cooperative di pescatori locali, che si stanno riprendendo con immensa fatica dai danni dello tsunami e dell’iniziale contaminazione del pesce, e sono terrorizzati dall’idea di vedere di nuovo svanire la fiducia riconquistata.

Preparazione di campioni di pesce per il controllo della presenza di elementi radioattivi (IAEA)


Per il trizio, viste le scarse prove di tossicità, non sono stabiliti limiti nel cibo. Dato che non si concentra nell’organismo, un livello di 1 Bq al litro nell’acqua corrisponderà a circa 1 Bq al chilogrammo nel pesce (a La Hague vicino agli scarichi si sono rilevati valori fino a 20 volte maggiori).

Una parte di questo trizio può essere un po’ più pericoloso di quello nell’acqua perché si fissa nelle molecole biologiche, e può essere incorporato nei tessuti e restarvi anche per anni. Quanto trizio sia metabolizzato così, e quanto più rischioso sia in questa forma, è dibattuto, ma i calcoli eseguiti sotto le ipotesi più varie mostrano che – per quanto pesce si possa mangiare – l’esposizione equivalente resta comunque largamente al di sotto anche degli standard di sicurezza dell’acqua europei. In linea di principio, quindi, non c’è ragione di temere per la commestibilità del pesce.

“Il problema però è un altro”, rimarca Casolino. Riassumendo liberamente quanto ha detto in un’intervista uno dei leader dei pescatori: se gli scienziati ci assicurano che il pesce non sarà contaminato, noi ci crediamo; ma non crediamo che riuscirete a convincerne i consumatori.

Dopo le dichiarazioni del ministro, il governo si è affrettato a precisare che nulla è ancora stabilito, e prima di qualsiasi decisione attende un ulteriore rapporto da un comitato di esperti. Ma come Harada ha lasciato trasparire, l’idea prevalente è che la scelta sarà lo smaltimento in mare.





Licenza Creative Commons



 

Crediti :

le Scienze

Continua a leggere

Fisica

I misteri dell’energia oscura, visti dalla Nasa

Cos’è l’energia che compone il 70% del totale del cosmo? Com’è possibile guardarci dentro? Ce lo spiega – o prova a farlo – l’Agenzia spaziale americana con un cartoon

Pubblicato

il

Costituisce quasi il 70 per cento dell’energia dell’intero cosmo, e ciononostante resta la più grande fonte di curiosità e mistero degli astronomi: dell’energia oscura, di fatto, sappiamo davvero pochissimo.

Eppure, ci fa sapere la Nasa, c’è una missione all’orizzonte per provare a capirci di più: si chiama Wfirst, da Wide Field Infrared Survey Telescope, un osservatorio spaziale tra i più grandi mai progettati finora, che – se tutto andrà come previsto – porterà parecchia luce nel buio in cui brancolano oggi le nostre conoscenze.

Con questo cartoon, l’Agenzia americana ci porta faccia a faccia con tutti gli interrogativi sull’energia oscura – e nel cuore del nuovo progetto, ovviamente.





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Fisica

Per salvare il clima, agli scienziati non resta che la disobbedienza civile?

Due ricercatori britannici hanno lanciato un appello ai colleghi: parlare di riscaldamento globale e di perdita di biodiversità non basta più, dobbiamo ribellarci e agire in prima persona

Pubblicato

il

Una protesta di Extinction Rebellion a Londra (foto: TOLGA AKMEN/AFP/Getty Images)

Migliaia e migliaia di pubblicazioni scientifiche, conferenze internazionali e interviste alla stampa non hanno frenato l’aumento delle temperature né il degrado degli ecosistemi. I governi sono sordi agli allarmi degli scienziati. E se alle parole non seguono i fatti, allora bisogna smettere di parlare e cominciare ad agire. Sì, contro la crisi ambientale, gli scienziati devono mobilitarsi in prima persona. Se necessario, anche abbracciando la disobbedienza civile.

Suona come una chiamata alle armi l’appello pubblicato sulla rivista Nature Ecology and Evolution dai ricercatori britannici Claire Wordley, ecologa dell’università di Cambridge, e Charlie Gardner, esperto di conservazione dell’università del Kent. Entrambi convinti che, quando il gioco si fa duro, gli scienziati devono cominciare a giocare.

Allarmi inascoltati

I fatti, del resto, sono ormai chiari: al ritmo attuale di emissioni di gas serra, la temperatura media globale sfonderà la soglia di 2°C e potrebbe addirittura schizzare a 5°C in più entro fine secolo, spingendo verso l’estinzione un milione di specie animali e vegetali. Rischiamo di perdere la banchisa, le foreste pluviali e le barriere coralline, subendo ondate di calore, siccità e tempeste che renderanno inabitabile gran parte della Terra, con sofferenze indicibili per l’umanità.

Non si può dire che gli scienziati non si siano impegnati per comunicare la gravità della crisi. E non solo pubblicando le loro ricerche sulle riviste specialistiche, ma anche cercando un dialogo con la classe politica e l’opinione pubblica. Nel 2017 hanno persino lanciato un allarme rivolto all’umanità sottoscritto da oltre 15mila ricercatori di 184 nazioni.

E non è stato tutto inutile: le conoscenze sulla crisi ambientale sono più certe e diffuse che mai. Eppure il 2018 è stato l’anno in cui abbiamo emesso più gas serra, mentre la scomparsa delle specie continua al ritmo di un’estinzione di massa. Il problema è che la conoscenza non basta a invertire la rotta se non si trasforma in azione individuale e collettiva. Per Wordley e Gardner è giunto il tempo di provare con un altro approccio: la disobbedienza civile non-violenta.

Disobbedienza civile

Infrangere pubblicamente una norma di legge per ottenere un cambiamento politico: la disobbedienza civile è una forma di lotta politica con una lunga tradizione. Nell’appello si scomodano Rosa Parks, Emmeline Pankhurst, Martin Luther King e Mohandas Gandhi, sostenendo che alcuni dei mutamenti sociali e politici più profondi della storia recente si devono alla ribellione di una minoranza molto determinata. Ma la disobbedienza civile ha radici ben salde anche nell’ecologismo politico.

Dal canto loro, i due ricercatori britannici hanno aderito a Extinction Rebellion, che lo scorso aprile ha messo in subbuglio il centro di Londra con blocchi stradali che si sono prolungati per undici giorni e sono terminati con l’arresto di oltre 1.100 attivisti. Nello stesso mese, oltre 12mila scienziati hanno firmato una lettera a favore dello sciopero globale della scuola per il clima, pubblicata dalla rivista Science, in cui si lodava la mobilitazione di Fridays for Future come “giustificata e supportata dalla migliore scienza disponibile”.

Scienziati ribelli

A dirla tutta, qualche precedente illustre non manca. L’astrofisico James Hansen, che per primo denunciò al congresso americano i rischi del riscaldamento globale, si è già fatto arrestare diverse volte nel corso delle proteste contro l’industria dei combustibili fossili. E nel 2013 ha lasciato la Nasa per dedicarsi a tempo pieno all’attivismo.

Il 22 aprile 2017, inoltre, in coincidenza con la giornata mondiale della Terra, c’era stata la Marcia per la scienza, a cui avevano aderito scienziati e ricercatori di tutto il mondo. In quell’occasione – in piena ondata di post-verità trumpiana – rivendicarono la realtà fattuale dei cambiamenti climatici, ma tutto sembrò esaurirsi in una difesa delle verità scientifiche e in una richiesta di maggiori finanziamenti alla ricerca.

Già allora, peraltro, la comunità scientifica si interrogò sul proprio ruolo, dividendosi sul timore che la politicizzazione dei ricercatori avrebbe potuto compromettere la (presunta) neutralità della scienza. È un nodo affrontato anche da Wordley e Gardner che, tuttavia, studi alla mano, affermano che prendere posizione non pregiudica affatto la credibilità degli scienziati (come del resto non accadde neppure dopo la Marcia per la scienza del 2017).

Dalla divulgazione all’attivismo

Certo, nessuno pretende che i ricercatori abbandonino i laboratori per farsi prendere a manganellate dalla polizia. E ovviamente, nel mondo reale neppure gli scienziati marciano tutti nella stessa direzione: come ricorda Jennifer Haigh nelle pagine di L’America sottosopra, sono pur sempre i geologi a suggerire alle compagnie petrolifere dove scavare.

Ma al netto di tutto questo, Wordley  e Gardner sollevano una questione importante quando si chiedono se ancora oggi il compito degli scienziati (come spesso si assume in modo implicito) debba limitarsi a fornire informazioni fattuali affinché la politica possa prendere le decisioni in base alle migliori conoscenze disponibili. Un modello che di fronte all’emergenza ambientale – sostengono i due autori – dimostra di non funzionare, ammesso che abbia mai funzionato.

E allora non resta che rivedere il ruolo degli scienziati: non più soltanto produttori di conoscenze, e neppure semplici divulgatori o advisor per i decisori politici, bensì attori delle politiche pubbliche e persino attivisti della causa ambientale. In altre parole, così come nel recente passato tra i doveri dei ricercatori si è aggiunta la divulgazione dei risultati della scienza, oggi, di fronte alla drammaticità della crisi ambientale, qualcuno comincia a chiedersi se tra i compiti degli scienziati che studiano il clima o la conservazione degli ecosistemi non vada annoverato anche l’attivismo. Prima che scompaia l’oggetto di studio o che il pianeta su cui proseguire le ricerche diventi inabitabile.





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Chi Siamo

Newsletter

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu [...]

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom [...]

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du [...]

Nature, Published online: 17 September 2019; doi:10.1038/d41586-019-02773-4Foster local expertise in [...]

Nature, Published online: 17 September 2019; doi:10.1038/d41586-019-02776-1Study what makes games ad [...]

Nature, Published online: 17 September 2019; doi:10.1038/d41586-019-02712-3Investments need to ramp [...]

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio [...]

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a [...]

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur [...]

Sismografo Live

Sismi Italia tempo reale

Terremoti Importanti

Aggiornato Mer 18 Set 09:07:42 (GMT+0200)

NASA TV

SPACE X

Seguici su Facebook

Facebook Pagelike Widget

Commenti tutte le sezioni

I più letti