Contattaci

Fisica

Che cosa dice veramente sulla realtà la teoria quantistica?

A quasi un secolo dalla formulazione della teoria quantistica, fisici e filosofi non sanno ancora dare una risposta a questa domanda. Ma si continuano a condurre esperimenti per capire qualcosa di più sulle sue leggi spesso paradossali e sul confine tra il mondo microscopico e quello macroscopico

Pubblicato

il

Per essere una dimostrazione in grado di ribaltare le grandi idee di Isaac Newton sulla natura della luce, era incredibilmente semplice. “Può essere ripetuto con grande facilità, ovunque splenda il Sole”, disse il fisico inglese Thomas Young ai membri della Royal Society di Londra nel novembre del 1803, descrivendo l’esperimento oggi noto come esperimento della doppia fenditura.
Young non era melodrammatico. Aveva ideato un esperimento elegante e relativamente semplice per mostrare la natura ondulatoria della luce, e così facendo aveva confutato la teoria di Newton che la luce fosse fatta di corpuscoli, o particelle.

Ma la nascita della fisica quantistica nei primi anni del 1900 chiarì che la luce è composta da unità minuscole, indivisibili, o quanti, di energia, che noi chiamiamo fotoni.

L’esperimento di Young, quando viene effettuato con singoli fotoni o anche singole particelle di materia, come elettroni e neutroni, è un enigma su cui riflettere, poiché solleva domande fondamentali sulla natura stessa della realtà. Alcuni l’hanno perfino usato per sostenere che il mondo quantistico è influenzato dalla coscienza umana, dando alle nostre menti un ruolo e una collocazione nell’ontologia dell’universo. Ma quel semplice esperimento fa davvero una cosa del genere?

Nella moderna forma quantistica, l’esperimento di Young consiste nell’inviare singole particelle di luce o materia verso due fessure o aperture praticate in una barriera per il resto opaca. Dall’altro lato della barriera c’è uno schermo che registra l’arrivo delle particelle (per esempio, una lastra fotografica nel caso dei fotoni).

Il buon senso porta ad aspettarci che i fotoni passino attraverso una o l’altra delle fenditure, accumulandosi dietro ciascuna di esse.

Invece non lo fanno.

Al contrario, vanno verso alcune parti dello schermo e ne evitano altre, creando bande alternate di luce e di buio. Queste cosiddette frange di interferenza sono del tipo che si ottiene quando due insiemi di onde si sovrappongono. Quando le creste di un’onda si allineano con le creste di un’altra, si ottiene un’interferenza costruttiva (bande luminose), e quando si allineano con gli avvallamenti si ottiene un’interferenza distruttiva (buio).

Ma c’è solo un fotone che attraversa l’apparecchiatura in ogni dato momento. È come se il fotone stesse attraversando entrambe le fessure contemporaneamente, interferendo con se stesso. E questo non ha senso nella fisica classica.

Dal punto di vista matematico, tuttavia, ciò che attraversa entrambe le fessure non è una particella fisica o un’onda fisica, ma una cosa chiamata funzione d’onda, una funzione matematica astratta che rappresenta lo stato del fotone (in questo caso la sua posizione).

La funzione d’onda si comporta come un’onda che investe le due fenditure; nuove onde generate da ogni fenditura sul lato opposto si propagano e alla fine interferiscono l’una con l’altra. La funzione d’onda combinata può essere usata per calcolare le probabilità di dove potrebbe trovarsi il fotone.

Il fotone ha un’alta probabilità di trovarsi dove le due funzioni d’onda interferiscono costruttivamente e una bassa probabilità di trovarsi in regioni d’interferenza distruttiva. Si dice che la misurazione – questo caso l’interazione della funzione d’onda con la lastra fotografica – fa “collassare” la funzione d’onda, che passa dall’essere diffusa prima della misurazione all’essere concentrata in uno dei punti in cui il fotone si materializza dopo la misurazione.

Questo apparente collasso indotto dalla misurazione della funzione d’onda è la fonte di molte difficoltà concettuali nella meccanica quantistica. Prima del collasso, non c’è modo di dire con certezza dove inciderà il fotone: potrà apparire in uno qualsiasi dei punti di probabilità diversa da zero. Non c’è modo di seguire la traiettoria del fotone dalla sorgente al rivelatore. Il fotone non è reale nel senso in cui è reale un aereo che vola da San Francisco a New York.

Werner Heisenberg, tra gli altri, interpretò questa matematica sostenendo che la realtà non esiste fino a che non viene osservata. “L’idea di un mondo reale oggettivo le cui parti più piccole esistono oggettivamente nello stesso senso in cui esistono le pietre o gli alberi, indipendentemente dal fatto che le osserviamo o meno … è impossibile”, ha scritto.

Anche John Wheeler ha usato una variante dell’esperimento della doppia fenditura per sostenere che “nessun fenomeno quantistico elementare è un fenomeno fino a quando non si tratta di un fenomeno registrato (“osservato”, “registrato in modo indelebile”)”

Illustrazione dell'esperimento di Young

Illustrazione dell’esperimento di Young della doppia fenditura (Credit: Alexandre Gondran Wikimedia (CC BY-SA 4.0)

Ma la teoria quantistica non è del tutto chiara su che cosa costituisca una “misurazione”. Postula che il dispositivo di misurazione debba essere classico, senza definire dove sia il confine tra classico e quantistico, lasciando così la porta aperta a chi pensa che per il collasso debba essere invocata la coscienza umana.

Lo scorso maggio, Henry Stapp e colleghi hanno sostenuto  che l’esperimento della doppia fenditura e le sue varianti moderne forniscono la prova che “un osservatore consapevole potrebbe essere indispensabile” per dare un senso al regno quantistico e che una mente transpersonale è alla base del mondo materiale.

Ma quegli esperimenti non costituiscono una prova empirica di tali affermazioni. Nell’esperimento della doppia fenditura con singoli fotoni, tutto ciò che si può fare è verificare le previsioni probabilistiche della matematica. Se le probabilità sono confermate nel corso dell’invio di decine di migliaia di fotoni identici attraverso la doppia fenditura, la teoria afferma che la funzione d’onda di ciascun fotone è collassata, grazie a un processo mal definito chiamato misurazione. È tutto.

Ci sono anche altri modi d’interpretare l’esperimento della doppia fenditura.

Per esempio, la teoria di de Broglie-Bohm afferma che la realtà è sia ondulatoria sia particellare. Un fotone si dirige verso la doppia fenditura con una posizione definita in ogni momento e attraversa una fenditura o l’altra; quindi ogni fotone ha una traiettoria. Il fotone sta “cavalcando” un’onda pilota, che attraversa entrambe le fenditure e produce l’interferenza: viene quindi guidato in una posizione d’interferenza costruttiva.

Nel 1979, Chris Dewdney e colleghi del Birkbeck College di Londra simularono la previsione della teoria per le traiettorie di particelle che attraversavano la doppia fenditura.

Nell’ultimo decennio, i fisici sperimentali hanno verificato che tali traiettorie esistono, anche se hanno utilizzato una tecnica controversa chiamata misurazione debole. Nonostante le controversie, gli esperimenti mostrano che la teoria di de Broglie-Bohm è ancora in corsa come spiegazione del comportamento del mondo quantistico. Cruciale il fatto che la teoria non ha bisogno di osservatori né di misurazioni né di una coscienza non-materiale.

E nemmeno ne hanno bisogno le cosiddette teorie del collasso, che sostengono che le funzioni d’onda collassano in modo casuale: quanto più è elevato il numero di particelle nel sistema quantistico, tanto più è probabile il collasso. Gli osservatori si limitano a scoprire il risultato.

Il gruppo di Markus Arndt dell’Università di Vienna, in Austria, ha testato queste teorie inviando molecole sempre più grandi attraverso la doppia fenditura.

Le teorie del collasso prevedono che, quando hanno masse che superano una certa soglia, le particelle di materia non possano rimanere in una sovrapposizione quantistica e così attraversare entrambe le fenditure contemporaneamente: ciò distruggerà la figura d’interferenza. Il gruppo di Arndt ha inviato una molecola con oltre 800 atomi attraverso la doppia fenditura e ha continuato a vedere interferenze. La ricerca della soglia continua.

Werner Heisenberg (!901-1976) in un ritratto d’epoca (Wikimedia Commons)

Roger Penrose ha una sua versione di una teoria del collasso, nella quale quanto più è massiccio l’oggetto in sovrapposizione, tanto più velocemente collasserà in uno stato o nell’altro, a causa delle instabilità gravitazionali. Ancora una volta, si tratta di una teoria indipendente dall’osservatore. Non è necessaria alcuna consapevolezza. Dirk Bouwmeester dell’Università della California a Santa Barbara, sta testando l’idea di Penrose con una versione dell’esperimento a doppia fenditura.

Concettualmente, l’idea è non solo di mettere un fotone in una sovrapposizione di stati in modo che passi attraverso due fenditure contemporaneamente, ma anche di porre una delle fenditure in una sovrapposizione di due posizioni contemporanee.

Secondo Penrose, la fessura dislocata rimarrà in sovrapposizione o collasserà mentre il fotone è in volo, portando a diversi tipi di schemi di interferenza. Il collasso dipenderà dalla massa delle fenditure. Bouwmeester ha lavorato a questo esperimento per un decennio e potrebbe presto essere in grado di verificare o confutare le affermazioni di Penrose.

Se non altro, questi esperimenti stanno dimostrando che non possiamo ancora fare affermazioni sulla natura della realtà, anche se sono ben motivate matematicamente o filosoficamente. E dato che neuroscienziati e filosofi della mente non sono d’accordo sulla natura della coscienza, affermare che essa fa collassare le funzioni d’onda è prematuro, nella migliore delle ipotesi, e fuorviante e scorretto nel peggiore dei casi.

Crediti :

le Scienze

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
Clicca per commentare

Leave a Reply

Per commentare puoi anche connetterti tramite:



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Fisica

La prima “foto” di un buco nero: come è stata scattata l’immagine di M87?

Gli scienziati spiegano come è stata ottenuta l’immagine del buco nero al centro della galassia Messier 87. Una scoperta che conferma le teorie di Einstein. Come si è costruito un telescopio “virtuale” grande quanto la Terra

Pubblicato

il

Un’immagine unica, che lascia scienziati e appassionati del cielo, ma anche il pubblico più generale, senza fiato. Stiamo parlando della prima foto di un buco nero, in assoluto la prima prova visiva diretta di un corpo celeste di questo genere, ottenuta dall’Event horizon telescope consortium (Ehtc). Il corpo osservato è il buco nero supermassiccio M87, al centro della galassia Messier 87. Il buco nero si trova a 55 milioni di anni luce da noi e ha una massa 7 miliardi di volte più alta di quella del sole.

buco nero M87

Le immagini del buco nero M87 nei vari giorni della (foto: Eht collaboration, Paper IV, 2019)

L’immagine lascia senza fiato anche perché oggetti invisibili dalle caratteristiche estreme, come i buchi neri, da cui nulla, nemmeno la radiazione, può uscire, non sono mai stati osservati e ripresi.

Come si cattura l’immagine di un buco nero?

Ma come è stato possibile arrivare a un risultato come questo, unico nella storia della scienza? Intanto bisogna fare una premessa. Ciò che è stato immortalato è l’ombra del buco nero, o meglio l‘orizzonte degli eventi, come viene definito in fisica. Ossia quella regione dello spazio tempo che rappresenta il limite, come uno spartiacque, dentro cui materia e radiazione sono ineluttabilmente inghiottite e nulla può uscire, neanche la luce.

Finora, l’ombra di un buco nero è ciò che si avvicina di più all’immagine del buco nero stesso. E non si era mai ottenuta un’immagine di questo tipo, anche se esistevano già diverse prove dell’esistenza di tali oggetti celesti.

Conferma di Einstein

“La prima ipotesi della presenza di questi oggetti”, spiega Ciriaco Goddi, segretario del consiglio scientifico del consorzio Eht e responsabile scientifico del progetto BlackHoleCam, durante la conferenza a Roma, presso la sede dell’Istituto nazionale di astrofisica, “è contenuta all’interno della teoria relatività generale di Einstein del 1916. Tuttavia, soltanto a partire dagli anni ’60 del secolo scorso si è risvegliato l’interesse verso i buchi neri”. E oggi, prosegue l’esperto, “l’ombra visualizzata del buco nero M87 è in perfetto accordo con la teoria di Einstein”. Insomma, ancora una volta Einstein non sbaglia mai.

L’immagine sembra quella di una ciambella spaziale, dai colori accesi e dai contorni sfumati. “È la foto del secolo”, aggiunge Goddi. “Ciò che si osserva è il plasma incandescente che circonda il buco nero, che grazie alle alte frequenze a cui opera la rete Eht, diventa trasparente ed emette radiazione e rende possibile vedere i confini dell’orizzonte degli eventi”, dice Goddi. Anche se, aggiunge, nella ciambella c’è un’asimmetria, dovuta al fatto che il plasma attraversa l’orizzonte degli eventi e viene inghiottito dal buco nero.

Il telescopio

Oltre a essere attraente, l’immagine è stata ottenuta con la risoluzione angolare più elevata mai raggiunta, prosegue lo scienziato. “Se avessimo dovuto utilizzare un unico telescopio – chiarisce l’esperto – questo avrebbe dovuto essere delle dimensioni di 5 chilometri di diametro, una grandezza impossibile da ottenere per qualsiasi strumento di questo genere”. Così i ricercatori hanno pensato di ricreare un telescopio enorme attraverso una particolare tecnica, chiamata Very-long-base interferometry (Vlbi). Questa tecnica sfrutta la rotazione terrestre e combina i dati ottenuti da tutti i telescopi della rete Eht.

(foto: Eht ESo/L. Calçada. La rete dei telescopi Eht)

In pratica viene misurata la distanza spaziale fra tutti i telescopi della rete mettendo insieme i dati della differenza di tempo del segnale in ingresso in ciascuno di questi. Attraverso questo processo, è un po’ come se si costruisse un unico grande telescopio grande come la Terra, da cui osservare il centro delle galassie.

Infine, perché scegliere un buco nero supermassiccio (come M87 oppure Sagittarius A*, al centro della Via Lattea) e non un buco nero qualsiasi?“Esistono moltissimi buchi neri”, aggiunge Goddi, “che tuttavia sono di piccole dimensioni, cioè pari a poche masse solari. Per questa ragione sono difficili da studiare”.

Mentre in questo caso, entrambi i candidati erano supermassicci, con una massa di circa 4 milioni di volte quella del Sole, nel caso di Sagittarius A*, e di addirittura 7 miliardi quella del sole per M87. Un’operazione molto complessa, che ha richiesto una collaborazione a livello globale, nonché una presa e un’analisi dati eccezionale: qualcosa come 4 milioni di miliardi di byte.

Com’è affacciarsi su un buco nero? Un’animazione ci porta ai confini di M87





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Fisica

Vivere vicino a un buco nero supermassiccio

In linea teorica, intorno ai buchi neri – compresi quelli supermassicci che si trovano al centro della maggior parte delle galassie – potrebbero esistere dei pianeti, e persino dei pianeti che ospitano forme di vita. Sarebbe pericoloso, ovviamente, ma potrebbe anche essere divertente!

Pubblicato

il

Cortesia NASA/JPL-Caltech

Fin dagli anni novanta sappiamo che ci sono pianeti intorno alle pulsar, oggetti straordinariamente densi nati da violente esplosioni delle stelle. È quindi ragionevole supporre che i pianeti possano esistere anche intorno ai buchi neri: i quali, e questo forse sorprenderà molte persone, in effetti hanno un impatto sull’ambiente molto più debole rispetto alle pulsar.

È anche possibile che su alcuni di questi pianeti si possa formare la vita, dato che sulla Terra gli organismi si sono adattati a condizioni estreme, tra cui calore estremo, freddo gelido, ambienti acidi, altamente salati e persino radioattivi.

Pianeti abitati potrebbero esistere vicino ai buchi neri supermassicci che si trovano al centro della maggior parte delle galassie. La nostra galassia, la Via Lattea, ospita un buco nero la cui massa è pari a quella di quattro milioni di stelle. Conosciuto come Sgr A* (Sgr sta per Sagittarius), la sua orbita circolare stabile più interna (ISCO, Innermost stable circular orbit) ha approssimativamente le dimensioni dell’orbita di Mercurio intorno al nostro Sole.

Allora, come sarebbe la vita su un pianeta del genere?

Prima di affrontare i molti rischi per la salute della vita in prossimità di un buco nero, dovremmo considerare i benefici. Se le civiltà si formano o migrano nelle vicinanze dei buchi neri, cosa potrebbero fare per divertimento e per profitto? Mi vengono in mente le seguenti 10 attività principali:

– Usare il buco nero come fonte di energia pulita scaricando rifiuti attraverso il disco di accumulazione della materia che gli gira intorno. Nel caso di un buco nero che ruoti molto velocemente, sarebbe possibile convertire in radiazione fino al 42 per cento della massa a riposo di questo “cestino della spazzatura”, purché sia situato in corrispondenza dell’orbita circolare stabile più interna.

– Accoppiare qualche dispositivo ingegnerizzato allo spin del buco nero, come un gigantesco volano da cui poter ricavare l’energia di spin.

– Navigare con vele a radiazione su jet relativistici a velocità che si avvicinano a quelle della luce.

– Prolungare la giovinezza visitando saloni di bellezza prossimi all’orizzonte del buco nero, dove il tempo scorre più lentamente a causa del redshift gravitazionale.

– Vedere lo spettacolo dell’intero universo come immagine riflessa e distorta delle lenti gravitazionali intorno al buco nero.

– Installare un parco giochi presso la cosiddetta “sfera fotonica”, dove ci si può divertire con effetti relativistici, come vedersi da dietro guardando dritto in avanti mentre la luce gira intorno al buco nero.

– Sfruttare nuove opportunità per i viaggi spaziali. Per esempio, quando tra miliardi di anni la Via Lattea e la sua galassia sorella Andromeda si fonderanno, i due buchi neri al loro centro si accoppieranno in uno stretto sistema binario, che dovrebbe agire come una fionda gravitazionale ed espellere stelle o pianeti alla velocità della luce. Le agenzie di viaggio possono offrire biglietti per corse eccezionali su pianeti espulsi che attraversano l’intero universo.

– Usare il buco nero come la prigione definitiva, condannando i criminali al confino e alla morte nella singolarità. La massa del buco nero determinerebbe il tempo che rimane da vivere ai prigionieri. Minore è il loro crimine, più massiccio dovrebbe essere il buco nero, permettendo di allungare la vita residua dei criminali una volta attraversate le “pareti della prigione” costituite dall’orizzonte del buco nero.

– Utilizzare per le comunicazioni le onde gravitazionali provenienti da piccoli oggetti in orbita intorno al buco nero. Quei segnali non possono essere bloccati da alcuna forma nota di materia.

– Testare aspetti fondamentali della gravità quantistica attraverso viaggi organizzati di scienziati sperimentali esperti in fisica delle stringhe.

Il pericolo principale per gli astronauti che tentano di eseguire queste attività deriva dalle maree gravitazionali. Come ha notato Albert Einstein nel suo famoso esperimento mentale, a chi si trova all’interno di un ascensore o di una navicella spaziale in caduta libera sembra di non avere alcuna gravità. Ma qualsiasi differenza nell’accelerazione gravitazionale tra la testa e le dita dei piedi, che misura la curvatura dello spazio-tempo, potrebbe strappare il corpo.

Quelle maree imporrebbero una condanna a morte nelle vicinanze di un buco nero di massa stellare, ma non rappresentano una minaccia per il corpo umano nell’ambiente molto più esteso intorno a un buco nero supermassiccio, come Sgr A*.

Un sistema binario dibuchi neri. (Cortesia NASA)

 

Di conseguenza, la densità della materia necessaria per fare un buco nero si scala linearmente con la sua curvatura spaziotemporale. I buchi neri di bassa massa si formano attraverso il collasso del nucleo di una stella massiccia a densità di gran lunga superiori a quelle di un nucleo atomico. Ma per fare un buco nero supermassiccio, che è molto più rarefatto, è sufficiente riempire l’orbita di Giove con acqua liquida.

Per quanto semplice possa sembrare questo progetto di ingegneria, non è affatto pratico, poiché richiede circa 100 milioni di masse solari di acqua. E il calore generato durante il versamento dell’acqua brucerebbe tutti gli impianti associati.

Infatti, il calore liberato dai buchi neri supermassicci costituisce una minaccia esistenziale per le civiltà che risiedono vicino ai centri delle galassie. In un articolo con John Forbes, abbiamo dimostrato che una frazione significativa di tutti i pianeti dell’universo è vulnerabile alla perdita delle loro atmosfere o alla bollitura dei loro oceani per il fatto di essere stati vicini a un nucleo galattico attivo durante la loro vita.

Per la prima volta nella storia dell’umanità, ora abbiamo la tecnologia per raffigurare le sagome dei buchi neri supermassicci al centro della Via Lattea e della galassia ellittica gigante M87 sullo sfondo del gas incandescente alle loro spalle. Le prime immagini di questo tipo dovrebbero essere pubblicate entro la fine dell’anno.

In una conferenza al convegno del 2018 della Black Hole Initiative di Harvard, un centro interdisciplinare dedicato allo studio dei buchi neri, ho suggerito che i futuri progressi nella propulsione spaziale potrebbero permetterci di organizzare una gita verso un buco nero vicino. Questa sarà una grande opportunità per dedicarsi ad alcune delle suddette attività, e forse anche per scambiare informazioni sulla gravità quantistica con un turista di altre civiltà che potrebbe essersi già accampato là fuori.


(L’originale di questo articolo è stato pubblicato su “Scientific American” l’11 marzo 2019





Licenza Creative Commons



Crediti :

le Scienze

Continua a leggere

Fisica

Una nuova soluzione al paradosso di Fermi

Alcuni astronomi affermano in un nuovo studio che i movimenti stellari dovrebbero facilitare la diffusione delle civiltà in tutta la galassia, ma noi potremmo comunque trovarci soli

Pubblicato

il

Per quanto ne sappiano, siamo sempre stati soli. Siamo solo noi su questo puntino azzurro pallido, “la casa di tutti quelli che amate, di tutti quelli che conoscete, di tutti quelli di cui avete mai sentito parlare”, per citare una famosa frase di Carl Sagan. Nessuno ha chiamato, nessuno è venuto in visita. Eppure l’universo è pieno di stelle, quasi tutte hanno pianeti, e su alcuni di questi pianeti è sicuramente possibile vivere.

Dove sono tutti quanti? Il fisico italiano Enrico Fermi sarebbe stato il primo a porre questa domanda, nel 1950, e da allora gli scienziati hanno proposto una grande quantità di soluzioni al paradosso che porta il suo nome. Una delle più note è arrivata dallo stesso Sagan, che, insieme a William Newman, in un articolo del 1981 disse che dovevamo solo avere pazienza. Nessuno ci ha visitato perché sono tutti troppo lontani; perché si evolva una specie abbastanza intelligente da inventare viaggi interstellari ci vuole tempo, e altro tempo ancora perché quella specie si diffonda in così tanti mondi. Nessuno è ancora arrivato.

Altri ricercatori hanno sostenuto che la vita extraterrestre potrebbe diventare spaziale solo molto di rado (proprio come sulla Terra è stata una sola specie a diventarlo). Qualcuno sostiene che le specie con buone capacità tecnologiche, quando emergono, si autodistruggono rapidamente. Altri ancora suggeriscono che gli alieni potrebbero averci visitato in passato, o che ci stiano evitando di proposito, essendo abbastanza intelligenti da diffidare di tutti gli altri. Forse la risposta più pessimista è un fondamentale articolo  del 1975, in cui l’astrofisico Michael Hart dichiarò che l’unica ragione plausibile per cui nessuno ci ha visitato è che in realtà là fuori non c’è nessuno.

Enrico Fermi

© ImageSource / AGF

 

Ora arriva un articolo che confuta Sagan e Newman, ma anche Hart, e offre una nuova soluzione al paradosso di Fermi evitando le speculazioni sulla psicologia aliena o l’antropologia.

La ricerca, che è in corso di revisione per la pubblicazione su “The Astrophysical Journal” (qui il pre-print su arXiv.org), suggerisce che una civiltà spaziale non avrebbe bisogno di tutto il tempo ipotizzato da Sagan e Newman per saltare tra i pianeti della galassia, perché i movimenti delle stelle possono aiutare a diffondere la vita.

“Il Sole è stato vicino al centro della Via Lattea 50 volte”, ha detto Jonathan Carroll-Nellenback, astronomo dell’Università di Rochester, che ha condotto lo studio. “I soli movimenti stellari permetterebbero la diffusione della vita su scale temporali molto più brevi rispetto all’età della galassia.” Ma anche se le galassie possono essere completamente colonizzate in tempi abbastanza brevi, la nostra solitudine non è necessariamente paradossale: secondo le simulazioni di Carroll-Nellenback e colleghi, la variabilità naturale significa che a volte le galassie sono colonizzate, ma spesso non lo siano, risolvendo il dilemma di Fermi.

La questione di quanto facilmente possa essere colonizzata la galassia ha avuto un ruolo centrale nei tentativi di risolvere il paradosso di Fermi. Hart e altri hanno calcolato che una singola specie spaziale potrebbe popolare la galassia in pochi milioni di anni, forse anche in soli 650.000 anni. Data la relativa facilità con cui dovrebbero diffondersi, la loro assenza indica che non devono esistere, secondo Hart.

Sagan e Newman sostenevano che ci sarebbe voluto più tempo, in parte perché le civiltà longeve hanno la tendenza a crescere più lentamente. Società con ritmi di crescita più rapidi e violenti potrebbero estinguersi prima di aver potuto toccare tutte le stelle. E’ quindi possibile che siano esistite molte società con una crescita rapida e una vita breve, che poi sono scomparse, o qualche società con un’espansione lenta e una lunga vita, che non sono ancora arrivate, come ha sintetizzato la tesi di Sagan e Newman Jason Wright della Pennsylvania State University, coautore del nuovo studio.

Ma Wright non è d’accordo con nessuna delle due soluzioni. “Così si confonde l’espansione della specie nel suo complesso con la sostenibilità dei singoli insediamenti”, ha detto. “Anche se fosse vero per una specie, l’idea che se si stanno espandendo sono necessariamente di breve durata non è una ferrea legge della xenosociologia”. Dopo tutto, ha osservato, la vita sulla Terra è robusta, “e si espande molto velocemente”.

Nel loro nuovo articolo, Carroll-Nellenback, Wright e i loro collaboratori Adam Frank dell’Università di Rochester e Caleb Scharf della Columbia University, hanno cercato di esaminare il paradosso senza avanzare ipotesi non verificabili. Hanno modellato la diffusione di un “fronte d’insediamento” attraverso la galassia, e hanno scoperto che la sua velocità sarebbe fortemente influenzata dai movimenti delle stelle, che nei lavori precedenti – compresi quelli di Sagan e Newman – erano trattate come oggetti statici.

Il fronte di insediamento poteva percorrere l’intera galassia sulla base dei soli movimenti delle stelle, indipendentemente dalla potenza dei sistemi di propulsione. “C’è molto tempo per una crescita esponenziale che porti sostanzialmente all’insediamento di ogni sistema”, ha detto Carroll-Nellenback.

Allen Telescope Array

L’Allen Telescope Array è uno dei più grandi rediotelescopi usato anche per la ricerca di forme di vita intelligente extraterrestre. (Cortesia Seth Shostak/SETI Institute)

Ma il fatto che non ci siano visitatori interstellari – quello che Hart ha chiamato “Fatto A” – non significa che non esistano, dicono gli autori. Anche se alcune civiltà potrebbero espandersi e diventare interstellari, non tutte durerebbero per sempre. Inoltre, non tutte le stelle sono una meta interessante, e non tutti i pianeti sono abitabili. C’è anche quello che Frank chiama “l’effetto Aurora”, dall’ominimo romanzo di Kim Stanley Robinson, in cui i coloni arrivano su un pianeta abitabile su cui non possono comunque sopravvivere.

Quando Carroll-Nellenback e i suoi coautori hanno incluso nel loro modello questi ostacoli all’insediamento ed effettuato molte simulazioni con diverse densità stellari, semi di civiltà, velocità dei veicoli spaziali e altre variabili, hanno trovato un ampio spazio intermedio tra una galassia silenziosa e vuota e una brulicante di vita. E’ possibile che la Via Lattea sia parzialmente colonizzata o che lo sia saltuariamente; forse gli esploratori ci hanno visitato in passato, ma non ce ne ricordiamo, e si sono estinti. Il sistema solare potrebbe anche essere in mezzo ad altri sistemi colonizzati; è stato solo trascurato dai visitatori per milioni di anni.

Anders Sandberg, futurologo del Future of Humanity Institute all’Università di Oxford, che ha studiato il paradosso di Fermi, ha detto di pensare che le navicelle spaziali diffonderebbero le civiltà più efficacemente dei moti stellari. “Ma il rimescolamento delle stelle potrebbe essere importante”, ha scritto in un’e-mail, “poiché è probabile che diffonda sia la vita, attraverso la panspermia locale [la diffusione dei precursori chimici della vita], sia l’intelligenza, se è davvero così difficile percorrere lunghe distanze”.

Frank pensa che il nuovo articolo dia speranza a chi, come il SETI, cerca forme di vita intelligente. Lui e Wright dicono che ora dobbiamo cercare più intensamente eventuali segnali alieni, cosa che sarà possibile nei prossimi decenni quando telescopi più sofisticati punteranno sulla panoplia degli esopianeti e cominceranno a intravederne le atmosfere.

“Stiamo entrando in un’epoca in cui avremo dati reali rilevanti per la vita su altri pianeti”, ha detto Frank. “Non poteva esserci un momento più rilevante di questo.”

Seth Shostak, un astronomo del SETI Institute che ha studiato il paradosso di Fermi per decenni, pensa che a spiegarlo possa essere da qualcosa di più complesso della distanza e del tempo, come la percezione.

Forse non siamo soli e non lo siamo stati. “I coleotteri nel mio giardino non si accorgono di essere circondati da esseri intelligenti, cioè i miei vicini e me – dice Shostak – ma siamo comunque qui.”


(L’originale di questo articolo è stato pubblicato il 7 marzo 2019 da QuantaMagazine.org, una pubblicazione editoriale indipendente online promossa dalla Fondazione Simons per migliorare la comprensione pubblica della scienza.





Licenza Creative Commons



Crediti :

le Scienze

Continua a leggere

Chi Siamo

Dicono di noi

5 star review  BdS

thumb Marco Dimitri
10/14/2013

Newsletter

NASA TV

SPACE X

Facebook

Ultimi commenti

I più letti