Contattaci

Fisica

Che cos’è la meccanica quantistica

La meccanica quantistica, o teoria dei quanti, è una teoria che i suoi stessi creatori non capivano pienamente, ma che si è rivelata l’unica capace di spiegare il comportamento della materia nel mondo microscopico.

Pubblicato

il

Nel cuore della materia c’è un mondo immenso, composto da miliardi e miliardi di particelle, che sfugge ai nostri sensi e alla nostra intuizione. Un mondo in cui non valgono le leggi fisiche usuali, ma quelle più complicate e “misteriose” della meccanica quantistica, una teoria così paradossale da stupire gli stessi scienziati che l’hanno inventata. «Nessuno la comprende davvero» ha detto nel 1965 Richard Feynman, uno dei fisici più brillanti della sua generazione.

AFFASCINANTE. Eppure questa teoria funziona, perché descrive il mondo degli atomi e delle molecole con precisione impeccabile. E ha moltissime applicazioni, dai laser alla risonanza magnetica. Anzi, si sospetta che siano alcuni fenomeni ad essa collegati, come l’effetto tunnel, a rendere possibile la fotosintesi e quindi la vita.

Non solo, la meccanica quantistica, per le sue caratteristiche quasi “magiche”, da sempre affascina filosofi e scienziati. E oggi sta entrando nella nostra cultura “quotidiana”, ispirando anche libri, film e opere d’arte. Ma che cos’è davvero questa teoria? E perché è così importante? Andiamo con ordine.

PARTICELLE MIRACOLO. Onde che si comportano come particelle, particelle che oltrepassano le barriere come fantasmi o che comunicano tra loro in modo “telepatico”… È questo lo strano mondo che gli scienziati si sono trovati di fronte quando hanno scoperto la meccanica quantistica.

Una delle caratteristiche principali di questa teoria è la quantizzazione. Cioè il fatto che, nel mondo microscopico, le quantità fisiche come l’energia non possono essere scambiate in modo “continuo”, come un flusso d’acqua del rubinetto che si può dosare a piacere, ma attraverso “pacchetti” detti “quanti”… come acqua contenuta in bicchieri o bottiglie dal volume prefissato. In virtù di questa proprietà, la luce è composta da corpuscoli di energia detti “fotoni”; e anche gli atomi possono assorbire questa energia soltanto a pacchetti: un atomo, per esempio, può assorbire o emettere 1 o 2 o 3 o più fotoni, ma non 2,7 fotoni o mezzo fotone.

È quello che avviene nell’effetto fotoelettrico, in base al quale un metallo colpito dal giusto tipo di luce produce elettricità: questo fenomeno, scoperto alla fine dell’800 e spiegato nel 1905 da Einstein, è alla base del funzionamento dei moderni pannelli fotovoltaici.

ONDA O PARTICELLA? La seconda “stranezza” della meccanica quantistica è il fatto che – come Giano Bifronte – tutte le particelle hanno una doppia natura: «In alcuni esperimenti si comportano come corpuscoli, in altri come onde» spiega Giancarlo Ghirardi, professore emerito di fisica all’Università di Trieste. «Un esperimento che mostra la natura ondulatoria degli elettroni è quello della doppia fenditura: si pone uno schermo sensibile di fronte a una doppia fenditura e si osserva che gli elettroni impressionano la lastra formando frange di interferenza, proprio come fa la luce (vedi disegno qui sotto). Altri esperimenti dimostrano invece che gli elettroni sono particelle».

fisica quantistica

Onda o particella? La luce passa da una fenditura, poi ne incontra altre due. Le onde interferiscono tra loro, creando chiazze alternate di luce e buio; se fossero particelle, ci sarebbe luce solo in A e in B. Con un fascio di elettroni accade la stessa identica cosa. Eppure, con altri esperimenti, si dimostra che gli elettroni sono particelle. Ecco perché si parla di “dualismo onda-particella”.

IMPREVEDIBILE. La fisica classica è “prevedibile”: permette di calcolare con precisione la traiettoria di un proiettile o di un pianeta. Nella meccanica quantistica, invece, quanto più precisamente si conosce la posizione di una particella, tanto più incerta diventa la sua velocità (e viceversa).

Lo dice il principio di indeterminazione, formulato nel 1927 dal fisico tedesco Werner Heisenberg. Quindi, se vogliamo descrivere il comportamento di un elettrone in un atomo, possiamo solo affermare che è localizzato in una nube intorno al nucleo, e la meccanica quantistica ci indica la probabilità che, effettuando una misura, l’elettrone si trovi in un certo punto. Prima della misura, lo stato dell’elettrone è descritto dall’insieme di tutti i possibili risultati: si parla quindi di sovrapposizione degli stati quantistici. Nel momento della misura, l’elettrone “collassa” in un singolo stato. Questo principio ha un risvolto concettuale importante: in un certo senso, con i loro strumenti di misura, gli scienziati intervengono nella creazione della realtà che stanno studiando.

COME FANTASMI. Un altro fenomeno quantistico bizzarro è l’effetto tunnel, cioè il fatto che le particelle possano superare una barriera come un fantasma passa attraverso un muro. «È così che si spiega il decadimento delle sostanze radioattive» dice Ghirardi. «La radiazione emessa da questi materiali, infatti, è costituita da particelle che superano una barriera energetica all’interno dei nuclei».

fisica quantistica

Un esperimento di propagazione della luce a velocità 4,7 volte superiore rispetto a quella nel vuoto (ma senza violare la relatività di Einsein), un fenomeno reso possibile dalla propagazione attraverso una barriera energetica (effetto tunnel).

INTRECCI LUMINOSI. Tutto ciò è già abbastanza strano. Ma il fenomeno più curioso è l’entanglement (“intreccio”). Immaginiamo di prendere due fotoni in una “sovrapposizione di stati” – possiamo pensarli come monete che girano all’infinito, mostrando entrambe le facce (testa o croce) – e di sottoporli all’entanglement, per poi portarli ai lati opposti dell’universo.

Secondo la meccanica quantistica, se effettuiamo una misura su uno dei due, e otteniamo per esempio testa, anche l’altra moneta, istantaneamente, cessa di trovarsi in uno stato indeterminato: se la misuriamo (dopo un secondo o dopo un secolo) siamo sicuri che il risultato sarà testa. Le due particelle sono come in… contatto telepatico. Assurdo? No, entanglement!

COME STAR TREKQuesta caratteristica sorprendente si può usare per realizzare il teletrasporto quantistico (vedi gallery qui sotto). «Supponiamo di voler trasferire da un punto A a un punto B un fotone identificato dal suo stato di polarizzazione» dice Ghirardi. «Per farlo bisogna disporre, oltre al fotone da teletrasportare, di due fotoni entangled, uno in A e l’altro in B. Poi si fa interagire il fotone da teletrasportare con il primo fotone entangled (quello in A) e si comunica all’osservatore in B l’esito dell’operazione, e così facendo gli si indica come deve manipolare il secondo fotone entangled per ottenere una copia identica del fotone di partenza».

In pratica, le informazioni del fotone di partenza sono trasferite in B grazie all’intermediazione dei fotoni intrecciati: in realtà si tratta di un trasferimento di informazioni, più che di un trasferimento di materia come quello di Star Trek.

 

Galleria

 

È per questo che il teletrasporto interessa soprattutto agli scienziati che studiano i computer quantistici del futuro. Computer, cioè, in cui sono elaborati qubit  invece dei “bit” (sequenze di “0” e “1”) dell’informatica tradizionale: il vantaggio è che i qubit consentono di svolgere in breve tempo, “in parallelo”, operazioni che ai computer tradizionali richiederebbero anni. Così, con un numero “n” di qubit, la quantità di strade di calcolo che possono essere intraprese contemporaneamente è pari a 2N, cioè 2x2x2… x2, n volte: con meno di 300 qubit si supererebbe il numero di particelle dell’intero universo. Finora, però, si riescono a manipolare solo pochi qubit, e con grande difficoltà: il “magico” mondo dei computer quantistici è tutto da esplorare.

Più di recente, 2 fisici dell’Università del Queensland (Australia) hanno ideato perfino il teletrasporto “temporale”, applicando l’entanglement al tempo anziché allo spazio, sempre con l’obiettivo di rendere possibili calcoli complessi. Ma, se funzionasse, sarebbe il primo vero esempio di macchina del tempo, sebbene un po’ diversa da come la fantascienza l’ha sempre immaginata.

fisica quantistica
29 persone (una sola donna, Marie Curie), 17 erano o sarebbero diventati premi Nobel, per la fisica o la chimica. Sono i partecipanti alla V Conferenza Solvay, dedicata ufficialmente a elettroni e protoni, ma che in realtà ospitò il primo grande dibattito sulla fisica quantistica, mettendo a confronto i sostenitori dell’interpretazione della meccanica quantistica secondo la scuola di Copenhagen e un nutrito gruppo di scettici che non credeva nella sua natura intrinsecamente probabilistica. I primi avevano come leader indiscusso Bohr e i secondi erano rappresentati da Einstein. I due scienziati si contrapposero a colpi di esperimenti mentali (Gedankenexperimente). Sono entrate nella leggenda le animate discussioni che iniziavano già durante la colazione del mattino, quando Einstein proponeva un esperimento mentale all’attenzione di Bohr, il quale poi passava la giornata a trovare una spiegazione che rientrasse nei canoni della meccanica quantistica.

I QUANTI NELLA FILOSOFIA E NELLA CULTURA. La meccanica quantistica però non è soltanto strana e complicata. Ci costringe anche a rivedere gli schemi mentali ai quali siamo abituati, mettendo alla prova le nostre convinzioni e offrendo nuove risposte alle domande che i filosofi si pongono da millenni. Ecco alcuni esempi.

IL DESTINO È PREVEDIBILE?

Come dimenticare, per esempio, le punizioni di Maradona? Le traiettorie impresse al pallone erano un mirabile incontro di sport e fisica. Tuttavia, se un ipotetico “Pibe de oro” quantistico si trovasse tra i piedi un elettrone, non riuscirebbe a calciarlo con la stessa precisione. Quel “pallone”, infatti, non seguirebbe la logica deterministica di tiro-gol.

Grazie al principio della sovrapposizione di stati, infatti, potrebbe essere in qualunque punto del campo, diffondendosi come una nebbia in più luoghi contemporaneamente. E soltanto dopo essere stato osservato “collasserebbe” finalmente in un punto preciso, magari proprio in rete… il destino, insomma, non è prevedibile.

Tutto il contrario di quello che sostenevano nel V sec. a. C. i greci Leucippo e Democrito, secondo i quali il mondo era composto da atomi che si muovono nel vuoto in modo prevedibile. Anche se poi, un secolo dopo, un altro greco, Epicuro, ipotizzò che tra gli atomi ci fossero urti casuali con conseguenze imprevedibili. La fisica classica, nell’800, sembrava dar ragione ai primi due. La meccanica quantistica, invece, seppure su basi completamente diverse, è più vicina al pensiero di Epicuro.

L’UNIVERSO ESISTE INDIPENDENTEMENTE DA NOI?

Esse est percipi: le cose, per esistere, hanno bisogno di essere percepite. Lo sosteneva nel ’700 il filosofo britannico George Berkeley, secondo cui una palla o un albero non esistono in sé, indipendentemente da noi: quelli che percepiamo sono gli stimoli sensoriali che ci arrivano direttamente da Dio. E il filosofo tedesco Immanuel Kant, sempre nel ’700, aveva ribadito che non si può conoscere il mondo “così come è in sé” (da lui definito noumeno), ma solo “ciò che appare”. Qualcosa di simile, due secoli dopo, dice la meccanica quantistica: per determinare la posizione di una particella, per esempio bisogna illuminarla… e allora la particella, colpita dalla luce, schizza via. Sappiamo dov’è, ma non dove sarà dopo un istante.

Per osservare la realtà, insomma, bisogna “disturbarla”: «Secondo l’interpretazione di Copenhagen » spiega Giulio Giorello, docente di filosofia della scienza all’Università Statale di Milano «gli eventi quantistici dipendono dalla presenza dell’apparato di osservazione che li deve misurare».

Einstein non riusciva a digerire questo aspetto della teo­ria: era infatti convinto che la real­tà fosse ben determinata e indipendente da chi l’osserva. Ma oggi gli esperti sono a favore dell’interpretazione di Copenhagen.

fisica quantistica

 

Niels Bohr e Albert Einstein, due padri della teoria. Fu in una delle loro discussioni sul significato fisico della meccanica quantistica che Einstein pronunciò la nota frase: “Dio non gioca a dadi”. Bohr confutò brillantemente tutte le critiche di Einstein, che però non si convinse mai fino in fondo della natura probabilistica del mondo quantistico. | WIKIMEDIA COMMONS

E SE L’EFFETTO PRECEDESSE LA CAUSA?

Uno dei pilastri della scienza classica è la regola secondo cui, nel mondo in cui viviamo, a ogni causa segue necessariamente un effetto: se tiro un sasso verso una finestra la rompo, se tocco il fuoco mi brucio. Nel ’700, il filosofo scozzese David Hume mise in discussione questo principio: anche se tutti i giorni due avvenimenti si susseguono, non dobbiamo considerare questo legame una conseguenza logica, perché potrebbe trattarsi di una nostra associazione di idee determinata dall’abitudine.

La scienza tradizionale non ha mai messo in dubbio il principio di causa ed effetto. La meccanica quantistica sembrerebbe violarlo, ma non è così: la teoria permette di calcolare con certezza alcuni aspetti dell’evoluzione delle particelle, ma non tutto (per il resto bisogna accontentarsi di calcolare la probabilità che un certo fenomeno accada). Ma in nessun caso la teoria ammette situazioni in cui, per esempio, l’effetto preceda la causa o ne sia scollegato.

LA NOSTRA ESSENZA SI ESTENDE A TUTTO L’UNIVERSO?

Quando navighiamo in Internet, lo spazio sembra essere risucchiato da un click del mouse, all’interno di collegamenti ipertestuali fra sistemi che distano migliaia di km l’uno dall’altro. Nel mondo subatomico, in certe condizioni, può succedere la stessa cosa: ci sono particelle “gemelle”, legate tra loro dalla proprietà dell’entanglement, che pur trovandosi in punti opposti dell’universo riuscirebbero a comunicare istantaneamente fra loro, agendo come un tutt’uno.

Questo fenomeno, ormai dimostrato, demolisce uno dei pilastri della fisica tradizionale: il principio di località . Tanto da far sorgere un dubbio: viviamo forse in un tutto indivisibile, dinamico, le cui parti sono interconnesse come sosteneva nel ’600 il filosofo olandese Baruch Spinoza?

Secondo la sua visione “panteistica”, esiste una sostanza unica e infinita, un ordine geometrico in cui Dio e natura coincidono (Deus sive natura, “Dio, ovvero la natura”) come causa interna al tutto.

LA NATURA RIFIUTA IL VUOTO?

Natura abhorret a vacuo (“la natura rifiuta il vuoto”): la frase risale al Medioevo, ma il concetto è antico: già nel IV sec. a. C. Il greco Aristotele e i suoi discepoli negavano l’esistenza di “un luogo in cui non c’è nulla”, dove “non è possibile che neppure un solo oggetto si muova”.

Il tabù, in Occidente, è rimasto per millenni, assimilato persino dalla Chiesa, che non tollerava l’esistenza di un luogo senza Dio. Poi la fisica classica aveva dimostrato che il vuoto si poteva creare, per esempio eliminando l’aria da un contenitore. Sembrava possibile anche creare il “vuoto perfetto”, cioè una regione di spazio del tutto priva di atomi e di luce.

Ma la meccanica quantistica ha stabilito che questo non è possibile: anche il “vuoto perfetto” conterrebbe infinite fluttuazioni energetiche in grado di generare particelle virtuali che nascono dal nulla e spariscono continuamente in tempi brevissimi. Aristotele, insomma, in un certo senso aveva ragione.

LA REALTÀ È MATERIA O INFORMAZIONE?

Oggi assistiamo al trionfo dell’informatica: testi, immagini, suoni e filmati viaggiano in Internet da una parte del mondo all’altra sotto forma di sequenze di 0 e 1: i bit. Questi mattoncini digitali, parte essenziale della nostra vita, ci portano a una riflessione: la realtà è formata da materia o da bit? Forse, come racconta il film di fantascienza Matrix, viviamo in un grande cervello elettronico che simula il mondo. Con la differenza che i bit della meccanica quantistica sono diversi da quelli “classici”: si chiamano qubit e consentono combinazioni (e operazioni logiche) di una complessità senza paragoni nel mondo dell’informatica tradizionale

ESISTE UNA TEORIA CAPACE DI SPIEGARE OGNI COSA?

I fisici cercano una Teoria del tutto, in grado di unificare ogni cosa: uomo e stelle, piccolo e grande… ce la faranno? Non è detto, ma l’ambizione è antica. A suo modo, ci aveva già provato nel VI sec. a. C. il filosofo greco Pitagora, affidando ai numeri, costituenti ultimi della natura, il compito di tenere unito l’universo.

Oggi, invece, si punta soprattutto a un’evoluzione della Teoria delle stringhe detta “Teoria M”. Più che un’unica teoria, al momento è un sistema di 5 teorie distinte che si applicano in contesti diversi.

Potremmo paragonarla a una grande mappa del mondo: per rappresentare fedelmente l’intera superficie terrestre occorrono tante piccole carte geografiche che, sovrapponendosi parzialmente tra loro, mostrano aspetti diversi dello stesso paesaggio.



Licenza Creative Commons




 

Crediti e Fonti :

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Clicca per commentare

Leave a Reply



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Fisica

Perché questo è il momento di andare su Marte

Una rassegna delle prossime avventure dirette verso il Pianeta rosso, in un video di Nature

Pubblicato

il

Saranno tre nei prossimi mesi le missioni dirette su Marte. Vedranno coinvolte Stati UnitiCina ed Emirati Arabi, saranno tutte caratterizzate dalla presenza di robot e mosse dalla curiosità di saperne di più sulla potenziale abitabilità pianeta rosso.

Gli Usa stanno per lanciare il loro quinto rover sviluppato ad hoc per Marte, Perseverance, che andrà a caccia di tracce di vita presente o remota tra le polveri e le rocce del pianeta. Gli scienziati cinesi sono invece alla loro prima volta con un rover marziano, mossi forse dal successo della loro ultima missione diretta sulla Luna. Gli Emirati Arabi, dal canto loro, si stanno preparando a sguinzagliare attorno a Marte un orbiter per investigarne l’atmosfera.

In questo video, diffuso da Nature, ecco le tre missioni in rassegna, e perché tutto questo sta succedendo proprio adesso.



Licenza Creative Commons




Crediti e Fonti :
Continua a leggere

Fisica

Una corsa allo spazio per superare i conflitti mediorientali

Il prossimo 14 luglio, gli Emirati Arabi Uniti si preparano a lanciare la missione al-Amal per l’osservazione di Marte: è una testimonianza significativa delle aspirazioni scientifiche ed economiche del paese e della possibilità di uno sviluppo di tutta l’area mediorientale svincolato dal petrolio e dalle armi

Pubblicato

il

La sonda al-Amal (© Government of Dubai Media Office)

Tra i molti sviluppi inaspettati del 2020, potrebbe essere rassicurante notare che il nostro universo talvolta funziona con un certo grado di prevedibilità. Molti eventi astronomici possono essere previsti con certezza matematica. All’incirca ogni due anni, la Terra e Marte, percorrendo le rispettive orbite intorno al Sole, raggiungono la distanza minima tra loro. Questa vicinanza orbitale offre una finestra per l’invio di veicoli spaziali sul nostro vicino.

Quest’estate ci offre una di queste opportunità per l’esplorazione marziana: per il 2020 sono in programma quattro missioni sul Pianeta Rosso. Rosalind Franklin, una missione congiunta europea e russa basata su rover, è stata rinviata al 2022 a causa delle interruzioni per la pandemia di COVID-19. La missione al-Amal (speranza, in italiano) degli Emirati Arabi Uniti è prevista per il 14 luglio 2020. È la prima impresa di questo genere in Medio Oriente e promuove le ambizioni di Emirati.

Il nome della sonda degli Emirati riflette le grandi aspirazioni scientifiche ed economiche del paese come potenza spaziale emergente. L’orbiter senza equipaggio osserverà l’atmosfera marziana, compresi eventi atmosferici come le tempeste di polvere, che caratterizzano in modo rilevante il clima dell’Arabia. Più in generale, la missione marziana degli Emirati mira a far progredire le capacità tecnologiche del Paese e a spingere i giovani degli Emirati a intraprendere carriere scientifiche e ingegneristiche.

In questo senso, l’impresa fa anche parte di una strategia a lungo termine perseguita dalle nazioni del Golfo per svincolarsi dal petrolio e dal gas e costruire un’economia basata sulla conoscenza.

Tali ambizioni tecnologiche sono inseparabili da quelle politiche. La spinta a creare un’economia della conoscenza non consiste solo nel diversificare le fonti di reddito dello stato. Ampliando le opportunità di occupazione, gli Emirati Arabi Uniti sperano di creare posti di lavoro per i giovani, le cui frustrazioni potrebbero altrimenti causare instabilità. Inoltre, i grandi progetti scientifici sono una dimostrazione simbolica di leadership e di soft power. Un paese capace di progetti spaziali complessi è un paese proiettato al futuro.
La sonda dovrebbe raggiungere Marte nel 2021. Questo coinciderà con il cinquantesimo anniversario della formazione degli Emirati Arabi Uniti.

Se la missione marziana al-Amal riguarda tanto il potere quanto la scienza, potrebbe esacerbare le rivalità esistenti in Medio Oriente? Una corsa allo spazio potrebbe portare le corse agli armamenti regionali a un nuovo livello? I canali satellitari come Al Jazeera del Qatar sono già stati coinvolti in aspre dispute e i lanciatori iraniani hanno sollevato preoccupazioni sul potenziale militare del paese. Altri veicoli spaziali, come razzi, missili e droni, potrebbero alimentare una miscela esplosiva?

La sonda degli Emirati non trasporta armi. Tuttavia, non è troppo eccessivo chiedersi se i paesi del Medio Oriente potrebbero seguire gli Stati Uniti nell’aggiungere forze spaziali alle loro agenzie governative. I sistemi dual use, come i razzi della corsa allo spazio della Guerra Fredda tra Stati Uniti e Unione Sovietica, possono servire a scopi sia pacifici sia bellici. Ugualmente, i satelliti per l’osservazione della Terra possono essere usati sia per il monitoraggio ambientale sia per lo spionaggio.

I conflitti futuri non farebbero che riprodurre le dinamiche già esistenti in Medio Oriente. Tuttavia, si spera che la missione marziana degli Emirati Arabi Uniti si discosti da questo cammino e contribuisca alla pace. Proprio come la maggior parte dei grandi progetti scientifici, essa dipende dallo scambio e dalla collaborazione internazionale.

Le istituzioni americane, come l’Università del Colorado a Boulder, sono state partner essenziali del Centro spaziale Mohammed Bin Rashid di Dubai nella costruzione della sonda. La Mitsubishi Heavy Industries si occuperà del lancio da un sito in Giappone. Non è molto diverso da quanto fatto dagli Stati Uniti, che si sono affidati ai razzi russi per il volo spaziale umano tra la fine del programma Space Shuttle nel 2011 e il volo SpaceX Demo-2 verso la Stazione Spaziale Internazionale di quest’anno. La cooperazione scientifica potrebbe non risolvere i conflitti, ma come minimo l’interdipendenza tecnologica potrebbe evitare che diventino troppo distruttivi.

I governi del Medio Oriente dovrebbero estendere ai loro vicini le collaborazioni esistenti in campo spaziale con paesi lontani dell’Asia o del Nord America. La regione ha molte altre risorse oltre al petrolio e al denaro. Nonostante le sanzioni, l’Iran ha accumulato un’esperienza impressionante in materia di veicoli di lancio. Il Qatar sa come gestire canali satellitari di grande successo. Israele ha alcune delle principali università e società tecnologiche del Medio Oriente. Anche lo Yemen, per quanto devastato dalla guerra, potrebbe contribuire con le sue montagne, fornendo siti di osservazione. Tutti i Paesi hanno popolazioni ricche di molto fantasiose e creative che vorrebbero trascendere i conflitti sul territorio o sulla religione. Una visione della Terra dallo spazio fa scomparire all’istante i confini nazionali e le mappe delle opposte fazioni.

Lo scambio, la cooperazione e la comprensione reciproca in campo spaziale non devono necessariamente partire da zero. Esistono già diversi forum che dovrebbero essere ulteriormente valorizzati. Da molti decenni l’Unione Astronomica Internazionale e la Federazione Astronautica Internazionale organizzano incontri. A livello regionale, l’Unione Araba per l’astronomia e le scienze spaziali e la Società Astronomica Araba fanno lo stesso. L’ingegnere iraniano-americano e astronauta Anousheh Ansari, simbolo vivente del superamento delle divisioni, ha sostenuto organizzazioni come Astronomi senza frontiere. Dovremmo seguire il suo esempio.

L’autore
Jörg Matthias Determann è professore associato di storia alla Virginia Commonwealth University, in Qatar. È anche redattore associato della Review of Middle East Studies. I suoi interessi si concentrano sulla storia della scienza e delle ricerche e sulla storia del mondo musulmano. Ha pubblicato tre libri: Historiography in Saudi Arabia: Globalization and the State in the Middle EastResearching Biology and Evolution in the Gulf States: Networks of Science in the Middle East, e Space Science and the Arab World: Astronauts, Observatories and Nationalism in the Middle East. Attualmente sta completando un quarto libro dal titolo Islam, Science Fiction and Extraterrestrial Life: The Culture of Astrobiology in the Muslim World. È possibile seguirlo su Twitter @JMDetermann.

(L’originale di questo articolo è stato pubblicato su “Nature Middle East” il 30 giugno 2020.)



Licenza Creative Commons




Crediti e Fonti :
Continua a leggere

Fisica

TikTok non piace ad Anonymous: «disinstallatela, è uno Spyware del Governo cinese»

Anonymous dichiara guerra a TikTok, riservandole alcune accuse estremamente gravi. Secondo il collettivo di hacker l’app sarebbe addirittura equiparabile ad uno Spyware “a servizio della Cina”.

Pubblicato

il

Quando si tratta di Anonymous è in realtà difficile parlare di un’organizzazione stabile e definita. Il fatto che sui social esistano più account, a rappresentanza di team di hacker diversi, che utilizzano questo nome non aiuta.

In questo caso le accuse contro TikTok, scrive Forbes, arrivano da uno degli account con il seguito più grande e che in passato aveva rivendicato più di qualche operazione di rilievo.

 

Cancellate TikTok immediatamente; se conoscete qualcuno che usa l’app spiegategli che è essenzialmente un malware gestito dal Governo cinese nell’ambito di una campagna di spionaggio di massa.

si legge in un tweet di YourAnonCentral.

Le gravi accuse del collettivo poggiano su un thread di Reddit diventato estremamente virale e dibattuto in questi giorni. Nel post sul forum un ingegnere sostiene di aver scoperto, grazie al reverse engineering, che TikTok violerebbero la privacy e la sicurezza degli utenti dell’app in modo sistematico.

Peraltro, scrive sempre Forbes, sembra che l’interesse di Anonymous nei confronti dell’app cinese nasca dopo che su questa erano apparsi diversi account di persone che si spacciavano per hacker del collettivo.

Anonymous non usa TikTok, è un’app creata come spyware dal Governo cinese.

si legge in un altro tweet del 6 giugno di YourAnonCentral.

Secondo il thread emerso su Reddit, TikTok otterebbe sistematicamente accesso ad un’ampia e rilevante quantità di informazioni, tra cui:

  • informazioni complete sull’hardware in uso: tipo di CPU, dimensioni schermo, dimensioni storage, dpi e numeri di serie di un gran numero di componenti. Informazioni che in gergo vengono chiamati “finger print” e sono utili per tracciare una persona online anche quando usa strumenti per mascherare il suo traffico.
  • Le altre app installate dall’utente, a quanto pare incluse quelle disinstallate nel tempo
  • IP, IP locale, Mac Address del dispositivo e del router, nome e modello del router.
  • Identifica se lo smartphone è stato sottoposto a rooting/jailbreak
  •   alcune “varianti dell’app” (sic) accederebbero ogni 30 secondi alla posizione GPS
  • l’ingegnere menziona anche l’installazione di proxy server sullo smartphone dell’utente ai fini del “transcoding dei media”

È bene capire che le accuse contenute nel thread di Reddit non sono verificate. L’azienda non ha rilasciato nessun commento a riguardo.

L’autore del post sostiene che scandagliare il codice di TikTok per capirne esattamente il funzionamento e i comportamenti sia tutto fuorché semplice, e che l’app prenderebbe delle misure piuttosto astute per occultare il suo comportamento quando rileva un tentativo di reverse engineering.

Tutti contro TikTok: 



Licenza Creative Commons




Crediti e Fonti :
Continua a leggere

Chi Siamo

Sezioni

SCIENZA

Vuoi ricevere le notizie?

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du

Nature, Published online: 07 August 2020; doi:10.1038/d41586-020-02356-8SARS-CoV-2 seems to interact

Nature, Published online: 07 August 2020; doi:10.1038/d41586-020-02347-9US rules forced an online ne

Nature, Published online: 07 August 2020; doi:10.1038/d41586-020-02341-1Researchers are redoubling e

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur

Sismografo Live

Sismi Italia tempo reale

Terremoti Importanti

Aggiornato Sat 8 Aug 09:00:04 (UTC)

NASA TV

SPACE X

Archivio

Lun Mar Mer Gio Ven Sab Dom
 12
3456789
10111213141516
17181920212223
24252627282930
31  

Condividi o invia il post

direzione@bambinidisatana.com
Whatsapp
Tumblr

I più letti