Contattaci

Lab

Il “batterio di Schrödinger” e il futuro della biologia quantistica

Una nuova analisi di un recente esperimento su batteri fotosintetici suggerisce che i ricercatori potrebbero essere riusciti a porne alcuni in uno stato di entanglement, mostrando per la prima volta l’effetto delle strane proprietà del mondo quantistico su esseri viventi e segnando il passaggio della biologia quantistica da ipotesi teorica a realtà tangibile

Pubblicato

il

Il mondo quantistico è strano. In teoria, e in una certa misura in pratica, i suoi principi richiedono che una particella possa apparire in due luoghi contemporaneamente – un fenomeno paradossale noto come sovrapposizione – e che due particelle possano diventare “entangled“, condividendo informazioni su distanze arbitrariamente grandi attraverso un meccanismo ancora sconosciuto.

L’esempio forse più famoso di stranezza quantistica è il gatto di Schrödinger, un esperimento ideale proposto da Erwin Schrödinger nel 1935. Il fisico austriaco immaginava che un gatto posto in una scatola insieme a una sostanza radioattiva potenzialmente letale potesse, per le strane leggi della meccanica quantistica, esistere in uno stato di sovrapposizione ed essere sia morto che vivo, almeno fino all’apertura della scatola e all’osservazione del suo contenuto.

Questo concetto è stato convalidato sperimentalmente innumerevoli volte su scale quantistiche. Alla scala del nostro mondo macroscopico apparentemente più semplice e di sicuro più intuitivo, tuttavia, le cose cambiano. Nessuno ha mai visto una stella, un pianeta o un gatto in uni stato di sovrapposizione o di entanglement quantistico.

Schrödinger

Interpretazione artistica del “gatto di Schrödinger”, che è al tempo stesso vivo e morto (© Science Photo Library RF / AGF)

 

Ma fin dalla formulazione iniziale della teoria quantistica, all’inizio del XX secolo, gli scienziati si sono chiesti dove  si incrociano esattamente i mondi microscopici e macroscopici. Quanto può essere grande il regno quantistico? E potrebbe essere abbastanza grande perché i suoi aspetti più strani influenzino profondamente e chiaramente gli esseri viventi?

Negli ultimi due decenni il campo emergente della biologia quantistica ha cercato di rispondere a queste domande, proponendo ed effettuando su organismi viventi esperimenti che potrebbero essere in grado di sondare i limiti della teoria quantistica.

Questi esperimenti hanno già dato risultati allettanti ma non conclusivi.All’inizio di quest’anno, per esempio, alcuni ricercatori hanno mostrato che il processo di fotosintesi – in cui gli organismi producono sostanze nutritizie usando la luce – può comportare alcuni effetti quantistici. Il modo in cui gli uccelli navigano o fiutano gli odori suggerisce che gli effetti quantistici possano verificarsi in modi insoliti all’interno degli esseri viventi.

Ma questi studi toccano solo la superficie del mondo quantistico. Finora, nessuno è mai riuscito a indurre un intero organismo vivente – nemmeno un batterio unicellulare – a mostrare effetti quantistici come l’ entanglement o la sovrapposizione.

Di conseguenza un nuovo articolo di un gruppo di ricercatori dell’Università di Oxford sta facendo aggrottare parecchie fronti per le sue affermazioni sulla riuscita di un esperimento di entanglement fra batteri e fotoni, particelle di luce.

Diretto dalla fisica quantistica Chiara Marletto e pubblicato a ottobre sul “Journal of Physics Communications”, lo studio è un’analisi di un esperimento condotto nel 2016 da David Coles  dell’Università di Sheffield e dai suoi colleghi.

In quell’esperimento, Coles e colleghi avevano sequestrato tra due specchi diverse centinaia di batteri verdi sulfurei, che sono fotosintetici, per poi ridurre via via la distanza tra gli specchi fino a poche centinaia di nanometri, molto meno della larghezza di un capello umano. Facendo rimbalzare della luce bianca tra gli specchi, i ricercatori speravano che le molecole fotosintetiche all’interno dei batteri si accoppiassero – o interagissero – con la cavità, il che significava essenzialmente che i batteri avrebbero continuato ad assorbire, emettere e riassorbire i fotoni che rimbalzavano. L’esperimento ha avuto successo: fino a sei batteri si sono accoppiati in quel modo.

Microfotografia di colonie filamentose del batterio fotosintetico Oscillatoria sp. cyanobacteria (SPL/AGF)

 

Marletto e colleghi sostengono però che i batteri non hanno soltanto interagito con la cavità. Nella loro analisi dimostrano che il segno energetico prodotto nell’esperimento potrebbe essere coerente con i sistemi fotosintetici di batteri entangled con la luce all’interno della cavità.

In sostanza, sembra che alcuni fotoni colpissero e mancassero contemporaneamente molecole fotosintetiche all’interno dei batteri, un segno distintivo dell’entanglement. “I nostri modelli mostrano che il fenomeno registrato è la firma di un entanglement tra la luce e certi gradi di libertà all’interno dei batteri”, dice.

Secondo il coautore dello studio Tristan Farrow, anche lui di Oxford, è la prima volta che un simile effetto è stato intravisto in un organismo vivente. “È certamente la chiave per dimostrare che siamo in qualche modo vicini all’idea di ‘batterio di Schrödinger'”, afferma. E suggerisce un altro potenziale esempio di biologia quantistica in natura: i batteri sulfurei verdi vivono nelle profondità dell’oceano dove la scarsità di luce, fonte di vita, potrebbe addirittura stimolare adattamenti evolutivi quantomeccanici per aumentare la fotosintesi.

Queste controverse affermazioni, tuttavia, vanno prese con molta cautela. In primo luogo, in questo esperimento la prova a favore dell’entanglement è circostanziale, e dipende da come si sceglie di interpretare la luce che attraversa ed esce dai batteri confinati nella cavità.

Marletto e colleghi riconoscono che i risultati dell’esperimento potrebbero essere spiegati anche da un modello classico privo di effetti quantistici. Ma, naturalmente, i fotoni non sono affatto classici: sono quantistici. Eppure, un modello “semiclassico” più realistico che usi le leggi di Newton per i batteri e quelle quantistiche per i fotoni non riesce a riprodurre il risultato reale che Coles e colleghi hanno osservato nel loro laboratorio, il che suggerisce che gli effetti quantistici fossero in atto sia nella luce che nei batteri. “La prova è un po’ indiretta, ma penso che sia così solo perché stanno cercando di essere rigorosi ed escludere cose e rivendicare troppo”, dice James Wootton, che si occupa di informatica quantistica all’IBM Zurich Research Laboratory e non è coinvolto nei due articoli.

Raffigurazione artistica di due atomi in uno stato di entanglement quantistico (© Science Photo Library RF / AGF)

 

L’altro caveat: le energie dei batteri e del fotone sono state misurate collettivamente, non in modo indipendente. Questo – secondo Simon Gröblacher della Delft University of Technology, nei Paesi Bassi, che non ha preso parte a questa ricerca – è in qualche modo un limite. “Sembra che stia accadendo qualcosa di quantistico”, dice. “Ma… di solito, se si dimostra l’entanglement, bisogna misurare i due sistemi in modo indipendente” per confermare che qualsiasi correlazione quantistica tra essi è autentica.

Nonostante queste incertezze, per molti esperti il passaggio della biologia quantistica da sogno teorico a realtà tangibile è una questione di “quando”, non di “se”.

Al di fuori dei sistemi biologici, le molecole, considerate in isolamento e collettivamente, hanno già mostrato effetti quantistici in decenni di esperimenti in laboratorio, quindi la ricerca di questi effetti per molecole simili all’interno di un batterio o addirittura del nostro stesso corpo sembrerebbe abbastanza sensata.

Negli esseri umani e in altri grandi organismi multicellulari, tuttavia, simili effetti quantistici molecolari in genere dovrebbero essere insignificanti, ma una loro manifestazione significativa all’interno di batteri, molto più piccoli, non sarebbe una sorpresa troppo sconvolgente. “Sono un po’ stupito per la sorpresa suscitata da questa scoperta”, dice Gröblacher. “Ma è ovviamente eccitante se lo si può dimostrare in un sistema biologico reale”.

Diversi gruppi, compresi quelli guidati da Gröblacher e Farrow, sperano di portare avanti queste idee.

Gröblacher ha progettato un esperimento che potrebbe mettere in uno stato di sovrapposizione un minuscolo animale acquatico, un tardigrado, cosa molto più difficile che creare un entanglement fra i batteri e la luce, dato che i tardigradi hanno dimensioni centinaia di volte maggiori.

Pur essendo grande in media un millimetro, un tardigrado ha comunque dimensioni centinaia di volte maggiori dei batteri fotosintetici (SPL/AGF)

 

Farrow sta cercando modi per migliorare l’esperimento sui batteri; l’anno prossimo lui e i suoi colleghi sperano di mettere in entanglement due batteri, e non con la luce in modo indipendente. “Gli obiettivi a lungo termine sono fondazionali e fondamentali”, dice Farrow. “Si tratta di capire la natura della realtà e se gli effetti quantistici siano utili alle funzioni biologiche. Alla radice delle cose, tutto è quantistico”, aggiunge, alludendo alla questione se gli effetti quantistici abbiano un ruolo nel funzionamento degli esseri viventi.
Potrebbe essere, per esempio, che “la selezione naturale abbia trovato il modo di sfruttare naturalmente i fenomeni quantistici”, osserva Marletto, come nel già citato esempio della fotosintesi in batteri delle profondità marine povere di luce. Ma per arrivare a fondo di tutto ciò è necessario cominciare dalle piccole dimensioni.

Le ricerche si sono costantemente orientate verso esperimenti a macrolivello, con un recente esperimento che ha coinvolto con successo milioni di atomi. Provare che le molecole che compongono gli esseri viventi mostrano effetti quantistici significativi – anche se per scopi banali – sarebbe un passo successivo fondamentale. Esplorando questo confine fra mondo quantistico e classico, gli scienziati potrebbero avvicinarsi a capire che cosa significa essere macroscopicamente quantistici, se una tale idea fosse vera.

—————————-
(L’originale di questo articolo è stato pubblicato su “Scientific American” il 29 ottobre 2018





Licenza Creative Commons



 

Crediti :

le Scienze

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
Clicca per commentare

Leave a Reply

Per commentare puoi anche connetterti tramite:



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Lab

Un computer quantistico per generare contemporaneamente tutti i futuri possibili

Non si tratta di prevedere il futuro ma di produrre simultaneamente, attraverso un complesso algoritmo quantistico, tutti i potenziali esiti di una determinata operazione, per poter scegliere al meglio. Un gruppo di fisici è riuscito a realizzare un dispositivo che genera tutti questi futuri

Pubblicato

il

È possibile generare contemporaneamente tutti i futuri possibili? E osservarli tutti, per scegliere quello migliore? Nella realtà macroscopica, quella che conosciamo e che è dominata dalle leggi della fisica classica, sicuramente no. Ma gli scienziati, oggi, hanno provato a farlo nel mondo invisibile dell’infinitamente piccolo attraverso un computer quantistico. Un gruppo coordinato dall’università di Griffith ha sviluppato un prototipo di dispositivo quantistico che è in grado di generare contemporaneamente tutti gli scenari futuri possibili – in questo caso non si tratta di situazioni reali ma di stati quantistici.

Il risultato è pubblicato su Nature Communications.

In ogni istante moltissime possibilità

Ogni scelta che ci si presenta può portare a diversi esiti: ad esempio nel film Sliding doors si vedono scorrere due futuri molto diversi. Moltiplicate il tutto per il numero di scelte che si presentano in ogni istante e avrete un’idea di quanti possibili futuri esistono ogni giorno. “Quando pensiamo al futuro”, sottolinea Mile Gu della Nanyang Technological University a Singapore, che ha sviluppato l’algoritmo quantistico alla base del prototipo, “ci confrontiamo con una vasta gamma di possibilità. Queste possibilità crescono esponenzialmente in ogni istante, mano a mano che si va nel futuro, come spiega l’esperto. “Anche se avessimo soltanto due diverse strade da scegliere ogni minuto, in meno di mezz’ora si sarebbero creati 14 milioni di possibili futuri. Insomma, si tratterebbe di un mare di futuri che non conosciamo.

Una sovrapposizione quantistica

Partendo da queste considerazioni matematiche, gli autori hanno sviluppato un algoritmo che possa esaminare tutti questi futuri. Come? Attraverso una sovrapposizione quantistica, ovvero studiando una sovrapposizione di stati fisici, puramente teorici. È quanto avviene nel caso ampiamente studiato del gatto di Schrödinger, che si trova in una scatola e che è contemporaneamente vivo e morto: lo stato di vita e quello di morte rappresentano una somma matematica e sono entrambi possibili con la stessa probabilità. E soltanto quando si verifica un intervento dall’esterno, cioè un osservatore apre la scatola – in altre parole si compie una scelta – si determina con certezza se il gatto è vivo oppure morto. Questo è quanto hanno realizzato i ricercatori, ma non solo con due futuri possibili, ma con tanti futuri. Gli autori hanno realizzato un dispositivo che potesse riprodurre questa sovrapposizione quantistica. Per farlo hanno sviluppato un particolare processore quantistico, in cui i possibili esiti (dunque i futuri) di un determinato processo decisionale sono rappresentati dalla posizione dei fotoni, i quanti di luce.

Tanti futuri possibili

Gli scienziati hanno dimostrato che il dispositivo riproduce vari futuri possibili, ognuno con la sua probabilità di accadere. In altre parole,  realizza una sovrapposizione quantistica di multipli futuri potenziali. E ciascun futuro è associato a un certo peso, ovvero ad una probabilità che possa verificarsi. Un po’ come quando il gatto di Schrödinger era vivo e morto con una probabilità identica per entrambi i futuri possibili. Tuttavia, in questo caso gli stati studiati sono ben più di due, e ognuno è associato ad un peso (una probabilità) corrispondente. Attualmente il prototipo riesce a simulare al massimo 16 futuri possibili, mentre in linea teorica l’algoritmo sottostante ne può generare numerosissimi. E il risultato va verso lo sviluppo di computer quantistici ancora più potenti.

Per determinare il funzionamento del dispositivo gli autori si sono basati sulle teorie del premio Nobel per la fisica Richard Feynman. L’idea è questa: quando una particella viaggia da un punto A ad un punto B, non segue necessariamente un singolo percorso. “Al contrario, percorre simultaneamente tutte le strade possibili che la collegano al punto di arrivo”, spiega la coautrice Jayne Thompson della Nanyang Technological University a Singapore. “Il nostro lavoro studia in maniera estesa questo fenomeno e lo manipola in modo da realizzare un modello statistico di questi futuri possibili”.

Un aiuto per l’intelligenza artificiale

“Il nostro approccio consiste nel mettere insieme una sovrapposizione quantistica di tutti i possibili futuri per ciascun processo decisionale”, aggiunge Farzad Ghafari, ricercatore dell’Università di Griffith, che ha coordinato lo studio. “Facendo interferire queste sovrapposizioni l’una con l’altra, riusciamo ad evitare di osservare singolarmente ciascun futuro possibile, uno alla volta”. L’autore spiega che molti algoritmi di intelligenza artificiale, sviluppati oggi, riescono a osservare che piccoli cambiamenti nel loro comportamento possono portare a esiti futuri molto differenti. “Per questo, le nostre tecniche – chiarisce Ghafari – possono permettere a questi sistemi quantistici di intelligenza artificiale di imparare in maniera più efficiente l’effetto delle loro azioni”. In altre parole, in futuro questi sistemi potrebbero essere in grado di studiare le conseguenze delle loro azioni e regolarsi in base a questa conoscenza: un obiettivo da sempre agognato da noi esseri umani, ma per noi impossibile da raggiungere.





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Lab

Come saranno le case su Marte? I progetti premiati dalla Nasa

Le idee vincitrici del contest dell’Agenzia spaziale per gli insediamenti marziani del futuro

Pubblicato

il

Ingresso, cucina abitabile, camere multiuso, spazio protetto per la crescita delle piante: potrebbero essere queste le stanze della nostra casetta sul Pianeta rosso, nel caso riuscissimo nel prossimo futuro a colonizzarlo.

È uno dei progetti premiati nel corso della 3D-Printed habitat challenge, il contest promosso dalla Nasa per raccogliere idee per potenziali spazi abitabili al di fuori della Terra, Luna compresa. A realizzarlo, il team Mars Incubator di New Haven, nel Connecticut. Nel video, eccone una ricostruzione virtuale con quanti più dettagli possibili.

Per vedere anche tutti gli altri premiati, fatevi un giro qui.





Licenza Creative Commons



Crediti :

Wired, NASA

Continua a leggere

Lab

I primi tessuti umani assemblati nello Spazio

Gli astronauti della Iss, alle prese con l’ingegneria dei tessuti, hanno recapitato sulla Terra i primi vasi sanguigni realizzati in laboratorio

Pubblicato

il

Un vero e proprio laboratorio biologiconello Spazio, dove cellule anche di tessuti umani crescono e possono fornire informazioni da applicare anche sulla Terra. Succede sulla Stazione spaziale internazionale, dove negli ultimi anni diversi astronauti si sono messi alla prova come biologi e ingegneri dei tessuti per approfondire le conoscenze, in particolare sui nostri vasi sanguigni.

Chi vediamo all’opera in questo interessante filmato è Tim Peake, protagonista della missione Principia, che ha assemblato durante una lunga serie di esperimenti veri e propri capillari: un risultato che non era mai stato raggiunto qui sulla Terra, poiché la struttura 3D che le cellule assumono in condizioni di microgravità è più coerente a quella dell’originale.





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Chi Siamo

Dicono di noi

di continuare così,oltretutto siete sempre più famosi e conosciuti. ciao.

thumb Renato Dal Ponte
12/09/2018

Newsletter

Sismografo Live

Facebook

Ultimi commenti

I più letti