Contattaci

Fisica

Le acque radioattive di Fukushima

Il rilascio delle acque di bonifica radioattive in alto mare è la soluzione più sicura. Non modificherebbe di fatto i livelli naturali di radioattività e non porterebbe a un accumulo di quantità significative di elementi radioattivi nei pesci. I pescatori giapponesi temono però la diffidenza dei consumatori

Pubblicato

il

Cisterne di stoccaggio delle acque radioattive a Fukushima (Gill Tudor/IAEA)

“Molto rumore per nulla.” Così il fisico Marco Casolino, ricercatore all’INFN all’Università di Roma Tor Vergata che da anni collabora con l’istituto RIKEN in Giappone, commenta il vespaio sollevato dal ministro per l’ambiente giapponese, Yoshiaki Harada, quando ha dichiarato che l’acqua radioattiva stoccata a Fukushima sarà dispersa in mare. Un clamore immotivato per due motivi.
Innanzitutto il ministro non annunciava una decisione presa, o un piano di smaltimento proposto, ma esprimeva solo una sua opinione. “Ha detto che sta finendo lo spazio per stoccare l’acqua e prima o poi bisognerà smaltirla in mare, cosa che si dice già dal 2013. In realtà però non è stata ancora presa alcuna decisione ufficiale, appunto per paura delle reazioni”, spiega a Le Scienze Casolino, che studia fra l’altro particelle ad alta energia e protezione dalla radiazione spaziale.

Casolino era in Giappone nel 2011 quando il terremoto e il conseguente tsunami hanno distrutto la centrale di Fukushima e ha partecipato alle indagini sulle fuoriuscite radioattive, realizzando anche uno strumento per misurare le radiazioni nel cibo grazie a fondi della Japan Science Foundation. “Inoltre, anche se quell’acqua finirà davvero in mare, la contaminazione sarà irrilevante”, aggiunge.

Ispezione sullo stato dei lavori di bonifica a Fukushima da parte di tecnici della IAEA e della TEPCO (NRA)


L’oggetto del contendere sono oltre un milione di tonnellate di acqua contaminata da trizio (un isotopo radioattivo dell’idrogeno), raccolta in serbatoi vicino alla centrale di Fukushima Daiichi. Per tenere raffreddati i resti dei reattori, in attesa dello smantellamento, bisogna farvi circolare un flusso continuo di acqua, che viene recuperata, purificata da gran parte dei radionuclidi, e riutilizzata. Ma all’acqua pompata si aggiunge quella che si infiltra dal sottosuolo. Una serie di interventi, con barriere sotterranee e sistemi di pompaggio e drenaggio, hanno molto ridotto queste infiltrazioni ma non le hanno eliminate. C’è quindi un surplus di acqua che ogni giorno va eliminato dal circolo e stoccato.

Quest’acqua conserva una certa radioattività perché i sistemi di purificazione eliminano gli isotopi più pericolosi come il cesio-137, ma non il trizio, un isotopo radioattivo dell’idrogeno che entra a far parte dell’acqua stessa e sarebbe molto oneroso da separare.

Stoccare o smaltire
Così, finora si sono accumulate oltre un milione di tonnellate di acqua radioattiva, stoccate in un migliaio di cisterne sul posto, e ogni giorno se ne aggiunge di nuova. Ma lo spazio sta finendo. L’esaurimento, già previsto per il 2020, è stato ritardato al 2022 grazie alla costruzione di nuove cisterne, ma non si può continuare così, se non altro perché in zona i siti stabili, elevati e pianeggianti, che offrono la maggiore sicurezza, stanno finendo.

“E in ogni caso lasciare l’acqua lì non è una buona idea, perché se arrivano nuovi terremoti, cicloni o alluvioni si può disperdere”, spiega Casolino. “È già successo col terreno radioattivo rimosso dalla superficie per decontaminare l’area. L’hanno accatastato in giganteschi sacchi di iuta, ma qualche anno fa è arrivato un tifone che ne ha trascinato via una parte, disperdendolo di nuovo nell’ambiente.”

Perciò, anni fa una task force del Ministero dell’economia giapponese ha esaminato a fondo cinque opzioni per liberarsi dell’acqua: farla evaporare, rilasciare l’idrogeno in atmosfera in forma gassosa, iniettarla negli strati profondi del sottosuolo, conservarla in depositi sotterranei, o diluirla e scaricarla nell’oceano. Nel 2016 quel gruppo di studio ha concluso che per sicurezza, costi e tempi, quest’ultima era la scelta migliore. Un’idea condivisa dall’Agenzia internazionale per l’energia atomica (IAEA), dalla Nuclear Regulation Agency del Ministero dell’ambiente giapponese, e dalla TEPCO (Tokyo Electric Power Company), l’operatore che gestiva l’impianto e ora ne cura lo smantellamento.

Campionamento delle acque di fronte alle coste di Fukushima (Petr Pavlicek/IAEA)


Già due anni fa, peraltro, il direttore della TEPCO, Takashi Kawamura, aveva presentato il riversamento in mare come una decisione già presa, suscitando in patria un allarme analogo a quello dei giorni scorsi e facendo poi una rapida marcia indietro.

Il trizio
I rischi concreti, come si diceva, sono in realtà irrisori. Anche se manca ancora un piano concreto su come procedere allo smaltimento, l’idea è diluire l’acqua per ridurre la radioattività entro standard di sicurezza accettabili – si parla dell’ordine dei 60.000 becquerel (Bq) per litro (un Bq è una disintegrazione di un nucleo al secondo) – e poi riversarla via via nell’oceano, al largo, in tempi che vanno da 5 a una quindicina d’anni.

Sia la quantità complessiva di trizio da smaltire sia le dosi giornaliere previste non superano quelle rilasciate da altri impianti nel loro normale funzionamento. Per esempio, in Francia l’impianto di lavorazione del combustibile esausto di La Hague rilascia ogni anno nella Manica 12.000 miliardi di Bq, circa dieci volte la radioattività di tutto il trizio stoccato a Fukushima. Le massime concentrazioni di trizio rilevate nella zona di La Hague sono state di 7 Bq al litro, e al largo di Fukushima i livelli previsti sono ancora inferiori, con stime intorno a 1 Bq al litro e picchi massimi di pochi Bq al litro.

Questi valori si scostano poco dalla radioattività da trizio già presente nel mare per effetto del fondo naturale e delle varie emissioni umane, e non superano quella di molti corsi d’acqua dolce. “Senza contare tutti gli altri radionuclidi”, aggiunge Casolino.

“Già nel 2013 avevamo calcolato che il cesio-137 e lo stronzio-90 dispersi dall’incidente di Fukushima, pur inquinando molto il mare negli immediati dintorni della centrale, avevano prodotto un aumento del tutto trascurabile della radioattività non appena ci si allontanava un po’. Nei primi 100 chilometri di mare davanti alla costa nord-orientale del Giappone le perdite hanno aggiunto meno di una parte su 100.000 alla radioattività già presente in natura con isotopi come il carbonio-14 e il potassio-40. Su tutto il Pacifico era meno di una parte su 100 milioni.”

La radioattività ora in gioco non solo è molto inferiore, ma riguarda il trizio, che è molto meno pericoloso: all’esterno del corpo è innocuo perché le particelle beta che emette non superano lo strato morto della pelle; quello che beviamo, a differenza di altri radionuclidi, non si concentra nei tessuti ma per lo più viene eliminato con l’acqua. Perciò, anche se la sua radioattività per dimezzarsi (emivita) impiega 12,3 anni, la sua emivita biologica nel corpo è di 10 giorni, come per tutta l’acqua. Infatti la sua tossicità resta incerta e i limiti ammessi nell’acqua potabile sono molto variabili: il più stringente è quello dell’Unione Europea, a 100 Bq al litro, mentre l’Organizzazione mondiale della Sanità consiglia una soglia 100 volte più alta, di 10.000 Bq al litro, e l’Australia ammette oltre 76.000 Bq al litro.

Quanto a livelli di trizio, quindi, l’acqua marina “contaminata” dallo svuotamento delle cisterne di Fukushima sarebbe addirittura potabile anche in Europa.

La vera preoccupazione dei pescatori
Il vero problema non è dunque sanitario o ambientale ma sociale: l’opposizione allo scarico dell’acqua viene soprattutto dalle cooperative di pescatori locali, che si stanno riprendendo con immensa fatica dai danni dello tsunami e dell’iniziale contaminazione del pesce, e sono terrorizzati dall’idea di vedere di nuovo svanire la fiducia riconquistata.

Preparazione di campioni di pesce per il controllo della presenza di elementi radioattivi (IAEA)


Per il trizio, viste le scarse prove di tossicità, non sono stabiliti limiti nel cibo. Dato che non si concentra nell’organismo, un livello di 1 Bq al litro nell’acqua corrisponderà a circa 1 Bq al chilogrammo nel pesce (a La Hague vicino agli scarichi si sono rilevati valori fino a 20 volte maggiori).

Una parte di questo trizio può essere un po’ più pericoloso di quello nell’acqua perché si fissa nelle molecole biologiche, e può essere incorporato nei tessuti e restarvi anche per anni. Quanto trizio sia metabolizzato così, e quanto più rischioso sia in questa forma, è dibattuto, ma i calcoli eseguiti sotto le ipotesi più varie mostrano che – per quanto pesce si possa mangiare – l’esposizione equivalente resta comunque largamente al di sotto anche degli standard di sicurezza dell’acqua europei. In linea di principio, quindi, non c’è ragione di temere per la commestibilità del pesce.

“Il problema però è un altro”, rimarca Casolino. Riassumendo liberamente quanto ha detto in un’intervista uno dei leader dei pescatori: se gli scienziati ci assicurano che il pesce non sarà contaminato, noi ci crediamo; ma non crediamo che riuscirete a convincerne i consumatori.

Dopo le dichiarazioni del ministro, il governo si è affrettato a precisare che nulla è ancora stabilito, e prima di qualsiasi decisione attende un ulteriore rapporto da un comitato di esperti. Ma come Harada ha lasciato trasparire, l’idea prevalente è che la scelta sarà lo smaltimento in mare.


Licenza Creative Commons





 

Crediti e Fonti :

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Clicca per commentare
0 0 vote
Vota articolo
guest
0 Commenti
Inline Feedbacks
View all comments

Fisica

Un video per celebrare i vent’anni della Stazione spaziale internazionale

Un minuto di immagini per ripercorrere i momenti più belli vissuti dagli astronauti a bordo della loro casa orbitante attorno alla Terra

Pubblicato

il

 

In questi giorni, esattamente vent’anni fa, le agenzie spaziali inauguravano la loro casa orbitante attorno al pianeta Terra, la Stazione spaziale internazionale. E sono ben 240 le persone che, a oggi, vi sono salite a bordo.

Sede di esperimenti scientifici sulla biologia, l’ecologia e il corpo umano, ma anche avamposto d’eccezione per l’osservazione del nostro pianeta e dello spazio profondo, la Iss viene celebrata dall’Esa con un video-tributo: un filmato di un minuto che racchiude alcuni dei momenti più belli dell’esperienza dell’essere umano in orbita.


Licenza Creative Commons





Crediti e Fonti :
Continua a leggere

Fisica

Forse abbiamo scoperto un nuovo organo nella nostra testa

Sembrerebbe essere il quarto tipo di ghiandole salivari maggiori, posto nello spazio in cui la cavità nasale incontra la gola. Ma serviranno ulteriori studi per poter confermare la scoperta di un nuovo organo

Pubblicato

il

Dopo centinaia di studi sull’anatomia, il corpo umano sembra riservarci ancora tante sorprese. L’ultima, infatti, è la scoperta di un nuovo organo, rimasto finora nascosto all’interno della nostra testa. Ad accorgersene, per caso, sono stati i medici del Netherlands Cancer Institute, mentre stavano sottoponendo alcuni loro pazienti a un innovativo esame diagnostico che permette di visualizzare nel dettaglio i tumori.

Come raccontano i ricercatori sulle pagine della rivista Radiotherapy and Oncology, dall’esame è emerso per caso un misterioso insieme di ghiandole salivari nascoste all’interno della testa dei pazienti, posizionato precisamente nello spazio in cui la cavità nasale incontra la gola.

Le ghiandole salivari, ricordiamo, sono addette alla produzione di saliva, essenziale per il corretto funzionamento del nostro sistema digerente. La maggior parte di questo fluido, come viene spiegato in tutti i manuali di anatomia, viene prodotto da tre principali tipi di ghiandole: la parotide, la sottomandibolare e la sottolinguale. A queste si aggiungono circa mille ghiandole salivari minori, sparse nelle labbra e nella mucosa interna dalla bocca alla faringe, talmente minuscole da essere difficilmente osservate senza un microscopio.

Ma ora, secondo il nuovo studio, potrebbe esserci un organo in più, ovvero un quarto tipo di ghiandole salivari maggiori. “Abbiamo tre grandi ghiandole salivari, ma non lì”, spiega Wouter Vogel, tra gli autori della scoperta. “Per quanto ne sappiamo, le uniche ghiandole salivari o mucose poste nella rinofaringe sono microscopicamente piccole. Quindi, potete immaginare la nostra sorpresa quando le abbiamo trovate”.

Esaminando una serie di scansioni di 100 pazienti affetti dal tumore, i ricercatori hanno osservato, tramite l’innovativa tecnica di imaging Psma/Pet/Ct, che tutti presentavano una paio di ghiandole, finora mai documentate, molto simili alle quelle salivari: sono, infatti, collegate a grandi condotti di drenaggio, indizio che porta a pensare a un possibile incanalamento dei fluidi.

Dati, perciò, che suggeriscono come queste ghiandole possano essere la quarta serie di ghiandole salivari, situata dietro il naso e sopra il palato, vicino al centro della nostra testa. “Le chiamiamo ghiandole tubariche, in riferimento alla loro posizione anatomica (sopra il torus tubarius)”, spiega Matthijs Valstar dell’Università di Amsterdam, co-autore dello studio.

Il motivo per cui siano rimaste finora nascoste non è ancora del tutto chiaro, anche se i ricercatori ipotizzano che “la loro posizione è difficilmente accessibile e sono necessarie immagini molto sensibili per rilevarle”. Sebbene siano necessarie ulteriori ricerche su un campione di partecipanti molto più ampio per poter confermare questi risultati, la scoperta potrebbe aiutare a spiegare il perché i pazienti che si sottopongono alla radioterapia riportano spesso condizioni croniche, come la secchezza delle fauci (xerostomia) e problemi di deglutizione (disfagia).

“Poiché queste misteriose ghiandole non erano note ai medici”, commentano gli autori, “nessuno ha mai cercato di risparmiarle da questi trattamenti”. Ma c’è chi si è dimostrato scettico a etichettare queste nuove ghiandole come un nuovo organo. Per esempio, Alvand Hassankhani, radiologo dell’Università della Pennsylvania, ha riferito al New York Times che esistono oltre mille ghiandole minuscole, “così piccole da essere difficili da trovare. È possibile che i ricercatori olandesi, quindi, abbiano trovato un modo migliore per identificare una serie di ghiandole salivari minori”.

 


Licenza Creative Commons





 

Crediti e Fonti :
Continua a leggere

Fisica

Perché questo è il momento di andare su Marte

Una rassegna delle prossime avventure dirette verso il Pianeta rosso, in un video di Nature

Pubblicato

il

Saranno tre nei prossimi mesi le missioni dirette su Marte. Vedranno coinvolte Stati UnitiCina ed Emirati Arabi, saranno tutte caratterizzate dalla presenza di robot e mosse dalla curiosità di saperne di più sulla potenziale abitabilità pianeta rosso.

Gli Usa stanno per lanciare il loro quinto rover sviluppato ad hoc per Marte, Perseverance, che andrà a caccia di tracce di vita presente o remota tra le polveri e le rocce del pianeta. Gli scienziati cinesi sono invece alla loro prima volta con un rover marziano, mossi forse dal successo della loro ultima missione diretta sulla Luna. Gli Emirati Arabi, dal canto loro, si stanno preparando a sguinzagliare attorno a Marte un orbiter per investigarne l’atmosfera.

In questo video, diffuso da Nature, ecco le tre missioni in rassegna, e perché tutto questo sta succedendo proprio adesso.


Licenza Creative Commons





Crediti e Fonti :
Continua a leggere

Sezioni

SCIENZA

chi siamo

Dicono di noi

5 star review  

Silvia Diamanti Avatar Silvia Diamanti
30 April 2017

Iscriviti alla Newsletter

Nasa Tv

ISS

Archive Calendar

Lun Mar Mer Gio Ven Sab Dom
 123
45678910
11121314151617
18192021222324
25262728293031

 

 

 

 

Condividi anche su

I più letti

Bambini di Satana: associazione razionalista di insegnamento senza scopo di lucro. © Copyright 2020 website designed by Marco Dimitri

0
Would love your thoughts, please comment.x
()
x