Contattaci

Ricerca

Lo sviluppo dell’immunità nei neonati: come l’ordine sorge dal caos

Un gruppo di recenti ricerche si sta concentrando sull’attività del sistema immunitario subito dopo la nascita, quando il neonato si trova ad affrontare per la prima volta numerose minacce esterne. Insieme ad analoghe ricerche sullo sviluppo del sistema immunitario nei bambini e negli adulti, questi studi serviranno a realizzare vaccini migliori

Pubblicato

il

Fonte immagine © BSIP / AGF

Molti aspetti del sistema immunitario sono rimasti a lungo misteriosi per gli scienziati. La sua attività è incredibilmente complicata e varia molto da individuo a individuo; una comprensione più profonda di come funziona potrebbe portare a vaccini più numerosi e migliori, e persino a una distinzione più chiara tra salute e malattia.

Ora tre studi riferiscono di aver trovato dei nuovi modelli in mezzo all’apparente caos del sistema, modelli che riguardano anche i giorni cruciali immediatamente successivi alla nascita, quando il sistema immunitario si trova ad affrontare per la prima volta molte minacce provenienti dal mondo esterno.

Lo scorso anno, alcuni ricercatori europei hanno pubblicato un’analisi del sistema immunitario di 100 bambini nati prematuri tra una e 12 settimane dopo la nascita. E in uno studio apparso questa settimana su “Nature Communications”, un consorzio globale di ricercatori ha iniziato a stabilire una linea di riferimento per uno sviluppo sano del sistema immunitario esaminando quali geni, proteine e cellule immunitarie sono attivi durante i primi sette giorni di un neonato.

“In tutta la prima settimana di vita avvengono massicci cambiamenti molecolari”, dice Ofer Levy, medico dello staff e direttore del programma Precision Vaccines del Boston Children’s Hospital, che ha contribuito allo studio più recente. “Cambiano oltre 1000 geni, molte proteine, centinaia di metaboliti: stiamo parlando di cambiamenti davvero radicali”.

Entrambi questi studi – e un terzo che guarda al sistema immunitario degli adulti – fanno parte di uno sforzo crescente per capire non solo i pezzi del sistema, ma il modo in cui si adattano fra loro, dice Petter Brodin, immunologo pediatrico e docente al Karolinska Institute di Stoccolma, autore senior dell’articolo dell’anno scorso. “Il sistema immunitario è estremamente complesso; ci sono così tante parti in movimento”, dice Brodin. “Se ci concentriamo solo su, diciamo, un tipo di cellula o di proteina, non saremo in grado di vedere come è cablato il sistema nel suo complesso, o come è regolato e funziona in un dato paziente in un dato momento”.

Brodin aggiunge di essere rimasto sorpreso quando la sua ricerca ha indicato che il sistema immunitario dei bambini risponde alla nascita in modi simili, indipendentemente dal fatto che siano nati a termine o prematuri.

“Quando il bambino esce e affronta l’ambiente per la prima volta succede qualcosa”, dice. “Avvengono molti cambiamenti drastici”. La ricerca di Brodin mostra che i batteri colonizzano rapidamente il tratto digestivo, la pelle e i polmoni dei neonati, e questa secondo lui è la “forza trainante” dei cambiamenti. “Pensiamo che questo sia il fattore scatenante dopo la nascita, che sia la ragione per cui tutti i bambini rispondono in modo simile: sono tutti colonizzati”, dice. Ulteriori ricerche potrebbero aiutare a distinguere la normale variazione individuale e determinare in che modo i neonati con certe caratteristiche affronteranno l’infanzia, osserva.

Nello studio pubblicato questa settimana, Levy e gli altri ricercatori del gruppo internazionale hanno confrontato due campioni di sangue di 30 neonati nati in Gambia, in Africa occidentale, convalidando i loro risultati in altri 30 neonati nati dall’altra parte del mondo, in Papua Nuova Guinea. Sono stati così in grado di ottenere enormi quantità di dati da un solo millilitro di sangue di ciascun bambino, una cosa che solo pochi anni fa non sarebbe stata possibile, dice Levy, che è anche professore alla Harvard Medical School.

Anche se i neonati hanno mostrato molte variazioni nelle misure di attività genetica, immunitaria e metabolica, il team è stato sorpreso di trovare quelle che Levy definisce “firme di base” del cambiamento di attività geniche e immunitarie dei bambini nel corso della prima settimana dopo la nascita.

Lo studio ha cominciato a impostare un parametro di base del comportamento immunitario che sarà utile per capire come i bambini prematuri o malati differiscono da quella norma, dice Levy, la cui squadra sta ora studiando in che modo i vaccini influenzano il processo.

Anche James Wynn, professore associato all’Università della Florida che studia le infezioni del sangue nei neonati, ritiene che lo studio del consorzio aiuti a stabilire un parametro di base di quel tipo, “una sorta di tabella di marcia  di ciò che avviene durante quella prima settimana”. Wynn, che non è stato coinvolto in nessuno dei nuovi studi, dice che è ansioso di vedere i dati relativi ad ancora più bambini, e in particolare a neonati prematuri come quelli che cura e studia. “Penso che questo lavoro sia fondamentale per determinare uno stato di malattia”, dice.

In un terzo studio recente, che ha esaminato il sistema immunitario in età adulta, scienziati dell’Università di Stanford e di Israele hanno seguito per più di nove anni l’attività nel sistema immunitario di 135 adulti di varie età. La ricerca, pubblicata all’inizio di questo mese su “Nature Medicine”, indica che, sebbene il sistema immunitario di ogni adulto sia diverso, i cambiamenti legati all’età seguono una traiettoria comune. È come se tutti guidassero verso la stessa posizione ma a velocità diverse, dice Shai Shen-Orr, coautore senior dello studio e responsabile del laboratorio di immunologia dei sistemi e medicina di precisione al Technion-Israel Institute of Technology.

Shen-Orr dice che lui e i suoi collaboratori hanno usato queste informazioni per sviluppare una misura clinica della salute immunitaria che può dire ai pazienti se il loro sistema immunitario funziona in modo appropriato, allo stesso modo in cui sono usati i livelli di colesterolo e la pressione sanguigna per valutare la salute cardiovascolare.

I dati potrebbero anche aiutare a identificare le persone che non trarranno beneficio dai vaccini antinfluenzali, dice, aggiungendo che potrebbe anche potenzialmente servire come punto di riferimento per i cambiamenti di stile di vita o per i farmaci destinati a rallentare l’invecchiamento immunologico.

Wayne Koff, presidente e amministratore delegato dello Human Vaccines Project (un’organizzazione internazionale senza scopo di lucro che lavora per decodificare il sistema immunitario umano), dice che tutte queste indagini per tracciare un quadro complessivo del sistema sono cruciali per lo sviluppo di vaccini di nuova generazione.

Quelli facili da creare sono già stati ottenuti, dice; studi come questi, che rivelano il funzionamento dettagliato del sistema immunitario, sono essenziali per espandere il portafoglio di malattie che possono essere prevenute o curate. “Negli ultimi sei-otto anni, forse, si è capito che comprendere la complessità di fondo del sistema immunitario umano è davvero al centro della prossima rivoluzione nella sanità pubblica”, dice. “È la prossima frontiera della medicina.”


(L’originale di questo articolo è stato pubblicato su “Scientific American” il 13 marzo 2019.



Licenza Creative Commons




Crediti :

le Scienze

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
Clicca per commentare

Leave a Reply

Per commentare puoi anche connetterti tramite:



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Ricerca

Aggirare le difese del cervello per curare i tumori

In topi di laboratorio è possibile trattare efficacemente un tumore cerebrale grave come il glioblastoma con l’immunoterapia, stimolando il drenaggio dei vasi linfatici del cervello e lasciando inalterata la barriera ematoencefalica

Pubblicato

il

Microfotografia di linfocita T (in rosa) all'attacco di una cellula tumorale (© Science Photo Library / AGF)

L’immunoterapia, una strategia terapeutica basata su farmaci in grado di stimolare il sistema immunitario ad attaccare i tumori, ha dimostrato enormi potenzialità negli ultimi anni, aumentando la sopravvivenza dei malati con diverse forme di neoplasie. Ma nel caso del glioblastoma, un tumore cerebrale mortale per il quale esistono pochi trattamenti efficaci, l’immunoterapia non ha avuto successo. Questo perché il cervello è protetto dalla barriera ematoencefalica, che impedisce l’accesso nel cervello agli agenti patogeni, interferendo però con le normali funzioni del sistema immunitario.

In uno studio su topi, ora pubblicato sulla rivista “Nature”, Akiko Iwasaki e colleghi della Yale University hanno trovato un nuovo modo di aggirare la barriera emato-encefalica, sfruttando l’estesa rete di vasi linfatici meningei che rivestono l’interno del cranio e hanno la funzione di raccogliere i rifiuti cellulari e di smaltirli attraverso il sistema linfatico del corpo.

Questi vasi si formano poco dopo la nascita, stimolati in parte dal gene che codifica per il fattore di crescita endoteliale vascolare C (VEGF-C). L’idea di Iwasaki e colleghi era verificare se si potesse sfruttare VEGF-C per aumentare il drenaggio linfatico e stimolare così la risposta immunitaria, valutando poi l’efficacia di questo intervento sui tumori cerebrali.

A questo scopo, i ricercatori hanno iniettato VEGF-C nel liquido cerebrospinale di topi di laboratorio affetti da glioblastoma e hanno osservato un aumento del livello di risposta dei linfociti T, un gruppo di cellule fondamentali del sistema immunitario, nei confronti delle cellule tumorali.
Il problema è però che alcuni tumori eludono l’attacco delle cellule tumorali stimolando i checkpoint immunitari, specifiche molecole che regolano il sistema immunitario, impedendo che esso attacchi le cellule dello stesso organismo. Una strategia dell’immunoterapia consiste quindi nel somministrare molecole denominate inibitori dei checkpoint immunitari, rendendo vana la strategia di difesa del tumore.

Iwasaki e colleghi hanno perciò provato a combinare la somministrazione di VEGF-C con inibitori del checkpoint comunemente usati in immunoterapia, aumentando in modo significativo la sopravvivenza dei topi. Ciò significa che l’introduzione del VEGF-C, in combinazione con i farmaci immunoterapici per il cancro, è una strategia efficace per colpire i tumori cerebrali.

“Questi risultati sono di grande interesse”, ha concluso Iwasaki. “Vorremmo portare questo trattamento ai pazienti con glioblastoma, che hanno una prognosi ancora molto scarsa con le attuali terapie di chirurgia e chemioterapia.”



Licenza Creative Commons




Crediti :

le Scienze

Continua a leggere

Ricerca

Agenzia nazionale per la ricerca, i dubbi degli scienziati

Il governo italiano ha in progetto di istituire un’agenzia per coordinare i finanziamenti alla ricerca su scala nazionale. Tuttavia, riferisce “Nature”, gli scienziati non sono stati coinvolti nella sua pianificazione e ne temono la dipendenza dal potere politico

Pubblicato

il

Il Presidente del consiglio Giuseppe Conte (© Alessandro Serrano / AGF)

Il governo italiano sta discutendo l’istituzione di un’agenzia nazionale per la ricerca, un’organizzazione che potrebbe aumentare il finanziamento alla scienza di centinaia di milioni di euro all’anno. Ma anche se gli scienziati hanno richiesto a lungo questo tipo di agenzia, alcuni sono preoccupati per questi ultimi piani. Lamentano che i ricercatori non siano stati coinvolti nelle discussioni sulla sua organizzazione e temono per la sua indipendenza dall’influenza politica.

Il primo ministro Giuseppe Conte, che guida un governo di coalizione tra il Movimento 5 Stelle e il Partito Democratico, ha parlato dell’idea di un’Agenzia nazionale per la ricerca (ANR) in un discorso nello scorso settembre. La proposta sarà discussa in parlamento questo mese nell’ambito della legge di bilancio 2020.

L’Italia ha già diversi meccanismi per finanziare la scienza di base, ma i ricercatori lamentano che il sistema è disordinati e i bandi per le richieste di finanziamento subiscono spesso dei ritardi. L’attuale Programma nazionale per la ricerca (PNR) ha un budget di 2,5 miliardi di euro per il periodo 2015-2020. Ma la principale fonte di denaro per la ricerca di base, il programma dei Progetti di ricerca d’interesse nazionale (PRIN), ha aperto un bando per la richiesta di fondi l’ultima volta nel 2017. Inoltre, l’Italia investe nella ricerca solo l’1,2 per cento del suo prodotto interno lordo, un valore molto al di sotto dell’obiettivo dell’Unione Europea del 3 per cento.

Molti scienziati avevano sperato in un’agenzia che potesse semplificare il finanziamento della ricerca, ma notano che l’ANR non fa che aggiungere un’altra organizzazione con un proprio budget. E non è ancora chiaro in che modo l’ANR dovrebbe interagire con gli altri meccanismi italiani di finanziamento della scienza. Il progetto in discussione afferma che l’agenzia coordinerebbe la direzione della ricerca nelle università e negli enti pubblici di ricerca, finanzierebbe progetti “altamente strategici” e incoraggerebbe la partecipazione italiana alle iniziative di ricerca europee e internazionali. Riceverebbe 25 milioni di euro nel 2020, 200 milioni nel 2021 e 300 milioni all’anno dal 2022.

Un’occasione mancata
“È incoraggiante che la questione faccia parte dell’attuale strategia del governo. Sfortunatamente, il modello che ne sta alla base non è ancora chiaro”, afferma Vincenzo Costanzo, oncologo dell’Istituto FIRC di Oncologia Molecolare (IFOM) di Milano. La mossa è un’occasione mancata per portare tutti i finanziamenti della ricerca del governo sotto un unico organismo in modo trasparente e indipendente, aggiunge. “Abbiamo davvero bisogno di un’agenzia che regoli le richieste annuali di sovvenzione”.

I ricercatori lamentano anche di non essere stati coinvolti nella pianificazione dell’ANR e sono preoccupati per l’indipendenza politica dell’agenzia. Secondo il disegno di legge, i vertici dell’ANR saranno nominati principalmente da politici: il primo ministro sceglierebbe il direttore e i ministri selezionerebbero la maggior parte degli otto membri del comitato esecutivo dell’agenzia. Molti avevano invece sperato in un’agenzia diretta da manager della ricerca e consulenti scientifici.

Nel complesso, l’agenzia è un passo avanti positivo, afferma Giuseppe Remuzzi, direttore dell’Istituto di ricerca farmacologica Mario Negri di Bergamo. Ma il ruolo del governo dovrebbe essere limitato a dare suggerimenti sulle nomine e i membri del comitato esecutivo dovrebbero essere scelti da un gruppo che opera secondo le migliori pratiche della comunità scientifica internazionale, dice. “Non vedo un’analisi seria della situazione attuale della nostra ricerca né una visione a lungo termine né l’impegno a investire nella scienza. Il rischio è che si tratti di una mossa di facciata vuota e pericolosa”, afferma Alberto Mantovani, direttore scientifico dell’IRCCS Humanitas di Milano.

Lorenzo Fioramonti, ministro italiano per l’istruzione, l’università e la ricerca, afferma che dovrebbero essere gli scienziati a cotribuire allo sviluppo dell’ANR. Era coinvolto nell’idea di creare l’agenzia, ma dice di essere sorpreso che il progetto di legge includesse anche informazioni sulla governance dell’agenzia. “La funzione e la governance dell’agenzia possono essere decise solo dopo una discussione con la comunità di ricerca”, afferma. Fioramonti aveva sperato che il disegno di legge servisse solo a costituire l’agenzia, e che i dettagli della sua gestione fossero decisi all’inizio del prossimo anno.

(L’originale di questo articolo è stato pubblicato su “Nature” il 20 novembre 2019 )



Licenza Creative Commons




Crediti :

le Scienze

Continua a leggere

Ricerca

Continua la caccia al neutrino di Majorana

Ancora risultati incoraggianti dall’esperimento Gerda, in corso ai Laboratori Nazionali del Gran Sasso: potremmo essere più vicini all’individuazione del neutrino di Majorana, una delle particelle più sfuggenti al mondo

Pubblicato

il

(immagine: Getty Images)

Esiste? Non esiste? E se esiste, com’è fatto? Domande alle quali, al momento, ancora non abbiamo trovato una risposta. Ma, a piccoli passi, con tanta pazienza, sembra che finalmente procediamo nella direzione giusta. L’oggetto delle questioni è un’entità più che ineffabile: i fisici la chiamano neutrino di Majorana. Una particella teorizzata dal fisico catanese, mai osservata sperimentalmente e che – qualora esistesse per davvero – dovrebbe coincidere con la propria antiparticella. Il motivo di una ricerca così affannosa è presto detto: individuare e caratterizzare il neutrino di Majorana aiuterebbe a far luce su uno dei più grandi misteri della fisica moderna, ovvero la cosiddetta asimmetria tra materia e antimateria – il fatto che nell’Universo si osserva più materia che antimateria (il che è un bene per noialtri, perché le due entità, se fossero presenti in pari quantità, si annichilerebbero completamente a vicenda).  È per questo motivo che diversi esperimenti in tutto il mondo – Gerda, Cuore, Nemo-3 e tanti altri – continuano a bombardare isotopi di germanio, tellurio e altri elementi in attesa di osservare un evento di decadimento direttamente riconducibile all’esistenza del neutrino. Al momento, i risultati non sono in alcun modo conclusivi: gli scienziati sono riusciti a migliorare significativamente potenza, sensibilità e precisione degli apparati sperimentali ma del neutrino ancora nessuna traccia. E non c’è modo, almeno finora, di capire se l’evento è talmente raro e sfuggente da avere poche speranze di osservarlo in tempo ragionevole e con la tecnologia che abbiamo a disposizione o se, più semplicemente, stiamo cercando qualcosa che non esiste.

Ripasso di fisica. Stando a quello che sappiamo finora, tutte le particelle elementari, e le loro mutue interazioni, sono descritte e regolate dalle leggi del cosiddetto Modello standard, una teoria che ha superato con successo innumerevoli prove sperimentali. Un modello corretto, dunque, ma incompleto, nel senso che le sue equazioni non riescono a giustificare l’asimmetria tra materia e antimateria. Una possibile spiegazione del fenomeno, fornita da diverse estensioni del Modello Standard, prevede che i neutrini siano particelle di Majorana, ovvero che coincidano con la propria antiparticella. In altre parole, che neutrino e antineutrino siano la stessa cosa. Excursus nell’excursus: i neutrini sono entità con massa molto piccola – fino a non molto tempo fa pensavamo addirittura che non avessero massa – e carica elettrica neutra; per di più, interagiscono molto poco con la materia, ragion per cui sono estremamente difficili da studiare e individuare. Cionondimeno sono di estremo interesse per i fisici, dal momento che giocano un ruolo centrale nel funzionamento delle stelle, nell’esplosione delle supernovae e nella formazione degli elementi durante il Big Bang.

Se cercare i neutrini è già di per sé così difficile, capire se sono o meno una particella di Majorana lo è ancora di più. Per provare a osservarlo, i fisici vanno a caccia di un particolare tipo di decadimento radioattivo, il cosiddetto decadimento β doppio senza neutrini (neutrinoless double-β decay, o 0νββ). Si tratta di una reazione in cui due neutroni all’interno di un nucleo atomico decadono simultaneamente in due protoni e due elettroni senza rilasciare alcun neutrino: la misura dell’energia dei due elettroni, spiegano all’Infn, costituisce la firma principale del β doppio senza neutrini. In altre parole, osservare il decadimento implicherebbe, indirettamente, l’esistenza del neutrino di Majorana. “L’osservazione di un eventuale neutrino di Majorana”, ci aveva spiegato Antonio Polosa, fisico teorico della Sapienza università di Roma, “sarebbe di importanza capitale per la fisica moderna. Da quando infatti si è scoperto che il neutrino è una particella massiva, e non senza massa come ritenuto in precedenza, il fatto che il neutrino possa coincidere con la propria antiparticella gioca un ruolo centrale nella teoria della supersimmetria, una teoria fisica secondo la quale ogni bosone avrebbe un corrispondente fermione simmetrico e viceversa (bosoni e fermioni sono le due classi in cui sono divise tutte le particelle elementari in base al valore dello spin).

L’ultima notizia, in ordine di tempo, è che gli scienziati dell’esperimento Gerda (GERmanium Detector Array), in corso ai Laboratori Nazionali del Gran Sasso dell’Istituto Nazionale di Fisica Nucleare (Lngs-Infn), che si occupano per l’appunto della ricerca del neutrino di Majorana, sono appena riusciti a raggiungere un nuovo record di sensibilità del rivelatore, il che potrebbe auspicabilmente rendere più vicina l’individuazione della particella. I dettagli della ricerca sono stati pubblicati su Science. Gerda è un esperimento allestito sotto le migliaia di metri cubi di roccia del Gran Sasso, che fungono da schermo naturale per i raggi cosmici, le particelle energetiche provenienti dallo Spazio che creerebbero disturbi al rivelatore. “Quando si cercano eventi rarissimi come il decadimento senza neutrini”, ci racconta Riccardo Brugnera, ricercatore Infn, professore all’Università di Padova spokeperson di Gerda, “il nemico è il rumore di fondo, ovvero tutti i segnali esterni che possono coprire quello cercato. Per abbattere il più possibile il rumore di fondo si combinano tre approcci: il posizionamento del rivelatore in un luogo il più possibile schermato dai raggi cosmici [sotto la roccia del Gran Sasso, in questo caso, nda], l’uso di un materiale più puro possibile e un insieme di tecniche di analisi statistica che filtrano matematicamente il rumore”.

L’esperimento è costituito da diversi cilindri di un isotopo del germanio (l’isotopo 76, l’unico che almeno teoricamente potrebbe generare un decadimento doppio beta) immersi in un criostato che contiene 63 metri cubi di argon liquido tenuto a una temperatura di -190 °C. Il criostato è a sua volta immerso in un contenitore riempito con 590 metri cubi di acqua ultrapura: l’argon e l’acqua sono privi di contaminazioni e agiscono come ulteriori schermi contro la radiazione naturale proveniente dall’ambiente esterno. Due anni fa i responsabili di Gerda erano riusciti a minimizzare il rumore di fondo: l’esperimento, al momento attuale, è quello con minor rumore di fondo tra tutti quelli che cercano di vedere il decadimento senza neutrini. “Con l’abbattimento degli eventi di fondo ai livelli che siamo riusciti a raggiungere”, dice ancora Brugnera, “Gerda si è posto nelle condizioni ottimali per poter rivelare il decadimento senza neutrini. Oggi abbiamo fatto un ulteriore passo avanti, migliorando significativamente la sensibilità dello strumento. Siamo arrivati a una sensibilità per il tempo di dimezzamento del germanio (cioè il tempo che deve trascorrere affinché la metà dei nuclei dia luogo al decadimento) di oltre 1026 anni, di gran lunga superiore all’età dell’Universo.

Di per sé, sapere che per osservare un decadimento senza neutrini bisogna aspettare un’età superiore a quella dell’Universo sembrerebbe una notizia non troppo confortante. Ma non è così: “Il fatto che siamo riusciti a raggiungere questa sensibilità”, conclude Brugnera, “ci aiuterà a progettare esperimenti più efficienti. Dal momento che l’evento che cerchiamo è così raro, per aumentare le probabilità di osservarlo non resta altro da fare che aumentare la massa del germanio: più atomi ci sono, più è probabile che avvenga il decadimento. E infatti Gerda terminerà la sua presa dati alla fine di quest’anno e sarà sostituito da un nuovo apparato, Legend-200, basato sugli stessi principi ma con un numero 5 volte superiore di rivelatori e un fondo previsto 5 volte inferiore. Legend-200 migliorerà così di un fattore 10 la sensibilità record di Gerda”.



Licenza Creative Commons




Crediti :

Wired

Continua a leggere

Chi Siamo

Newsletter

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu [...]

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom [...]

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du [...]

Nature, Published online: 18 February 2020; doi:10.1038/d41586-020-00154-wUpdates on the respiratory [...]

Nature, Published online: 18 February 2020; doi:10.1038/d41586-020-00404-xHow Nature reported a stam [...]

Nature, Published online: 18 February 2020; doi:10.1038/d41586-020-00459-wDisaster-zone research: no [...]

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio [...]

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a [...]

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur [...]

NASA TV

SPACE X

Archivio

LunMarMerGioVenSabDom
 12
3456789
10111213141516
17181920212223
242526272829 

 

 

 

 

 

I più letti