Contattaci

Fisica

Osiris-Rex, 5 motivi che ci hanno portato sull’asteroide Bennu

Antichissimo, non troppo piccolo, composto da elementi chimici unici per studiare il Sistema solare e l’evoluzione dell’Universo: Bennu è stato scelto dagli scienziati per tutte queste ragioni

Pubblicato

il

(foto: NASA’s Goddard Space Flight Center)

Scoperto quasi 20 anni, fa, antichissimo, non troppo piccolo, l’asteroide 101955 Bennu probabilmente possiede alcune delle caratteristiche che lo rendono più appetibile per gli scienziati. Tanto che la Nasa ha appena inviato con successo la missione Osiris-Rex, arrivata il 3 dicembre 2018 in prossimità di Bennu. L’obiettivo della missione è prelevare un campione dell’asteroide per poi riportarlo sulla Terra, nel 2023, e studiarlo. Tuttavia, nel Sistema solare ci sono ben 780mila asteroidi: perché gli scienziati della Nasa hanno scelto proprio Bennu? A spiegarlo è la stessa Nasa, che fornisce alcuni validi motivi per cui avere in mano anche pochi grammi di questo corpo celeste potrebbe essere molto importante per gli scienziati.

1. Verificare la validità dei modelli

Dalla sua scoperta, nel 1999, gli scienziati hanno fornito diverse previsioni sulle proprietà, ad esempio la composizione chimica: verificare se queste previsioni sono corrette è essenziale per confermare questi ed altri modelli sugli asteroidi, e, in caso contrario, individuare le criticità e migliorare le osservazioni telescopiche.

2. Dare informazioni sull’origine del Sistema solare

Questo asteroide potrebbe essersi formato dall’assembramento di materiali provenienti da stelle nella loro fase finale che hanno poi dato luogo al Sistema solare. Questi materiali potrebbero essere presenti anche in asteroidi più piccoli, che hanno raggiunto il suolo terrestre (come meteoriti): tuttavia, gli scienziati non ne conoscono la provenienza precisa e inoltre la loro composizione viene alterata dall’entrata in atmosfera.

Mentre Bennu potrebbe essere una fonte attendibile per rintracciare e studiare questi materiali, anche considerando che è molto antico e che si è conservato nel vuoto dello Spazio. Così, studiare la sua composizione chimica possono essere importanti per studiare meglio origini ed evoluzione dell’Universo.

3. Le qualità che lo hanno reso più facile da raggiungere

Arrivare non è certo stato semplice. Tuttavia, per alcune caratteristiche Bennu era l’asteroide ideale per una missione spaziale. Bennu è vicino alla Terra e ruota intorno al Sole nello stesso piano con cui lo fa il nostro pianeta, tutti elementi che hanno facilitato l’invio della missione. Le sue dimensioni, poi, non sono né troppo piccole né troppo grandi per un’esplorazione di questo genere: il suo diametro è di circa 492 metri(nell’immagine si vede il confronto con la Torre Eiffel, che è alta 324 metri).

4. Potrebbe darci informazioni sull’origine della vita 

Bennu potrebbe contenere tracce di molecole organiche, come catene di carbonio legate a idrogeno e ossigeno, che sono i costituenti essenziali della vita e di tutti gli esseri viventi. E potrebbe esservi anche acqua, intrappolata nei minerali che compongono l’asteroide .Studiare un campione di Bennu, dunque, potrebbe aiutare a capire qual è stato il ruolo degli asteroidi nella comparsa sulla Terra di composti chimici essenziali per la vita.

5. Studiare i rischi di impatto

La vicinanza di Bennu alla Terra potrebbe diventare significativo intorno al 2135, anno in cui, secondo le previsioni degli scienziati della Nasa, c’è una bassa probabilità che colpisca il nostro pianeta. Così gli scienziati hanno pensato di effettuare misurazioni che possano aiutare i nostri discendenti per prevedere il rischio di impatto di questo e altri asteroidi. Come? Ad esempio valutando un fenomeno fisico noto come effetto Yarkovsky, probabilmente alla base dell’avvicinamento di Bennu, che ogni anno avanza di 280 metri verso il Sole e la Terra. Questo effetto riguarda spesso piccoli corpi celesti come asteroidi e consiste in una spinta dovuta al fatto che la luce solare calda raggiunge un lato dell’asteroide, il quale poi ri-emette calore, mentre ruota intorno al Sole, dal lato non esposto.





Licenza Creative Commons



Crediti :

Wired

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Fisica

Nespoli docente di Biologia Spaziale per formare i futuri biomedici dello spazio

Il ciclo di lezioni, realizzato in collaborazione con l’Agenzia Spaziale Europea (Esa), spazierà dagli effetti del volo spaziale sul microbioma intestinale fino all’ibernazione come possibile contromisura alla durata della missione.

Pubblicato

il

L’astronauta Paolo Nespoli tra i docenti salirà in cattedra alla Scuola Superiore Sant’Anna di Pisa, per tenere il primo corso di Biologia spaziale mai organizzato in Italia.
Il ciclo di lezioni, realizzato in collaborazione con l’Agenzia Spaziale Europea (Esa),punta a preparare nuovi esperti di biomedicina spaziale che lavoreranno alle future missioni umane di lunga durata, sviluppando tecnologie che possano aiutare la nostra salute anche sulla Terra.

Per avviare la colonizzazione umana dello spazio è necessario capire come contrastare gli effetti dannosi dei fattori ambientali avversi che accompagnano il volo dell’uomo nello spazio, come le radiazioni cosmiche e le differenze nei cicli tra luce e buio. Per questo la ricerca biomedica di base avrà un ruolo sempre più importante nello sviluppo di ambienti artificiali in cui gli esploratori spaziali potranno trovare risposte alle loro esigenze vitali e operative.

Affrontare questa enorme sfida ha già fruttato importanti innovazioni tecnologiche e biomediche che ci accompagnano nel quotidiano terrestre, migliorando la nostra vita e la nostra sicurezza: la sfida forse più importante sarà accettare che questo balzo in avanti tecnologico e scientifico non potrà essere che un’impresa collettiva e transnazionale“, afferma Debora Angeloni, responsabile scientifica del corso e ricercatrice in Biologia della Scuola Superiore Sant’Anna, che questo pomeriggio terrà la prima lezione sugli effetti scatenati dalla microgravità sulle cellule.

Il primo ciclo di cinque lezioni, che martedì 26 febbraio avrà come guest star Paolo Nespoli, sarà seguito da un secondo corso di approfondimento, articolato in dieci lezioni di tipo seminariale: gli argomenti, dagli effetti del volo spaziale sul microbioma intestinale e dalla protezione di vista e ossa, fino all’ibernazione come possibile contromisura alla durata della missione, saranno trattati da specialisti di levatura internazionale.





Licenza Creative Commons



Crediti :

Globalist

Continua a leggere

Fisica

I satelliti capricciosi che confermano la teoria di Einstein

Il parziale fallimento del lancio di due satelliti della costellazione Galileo, il sistema spaziale europeo di navigazione, è servito a confermare la validità della relatività generale. Collocati per errore in orbite inutili per la navigazione, i due satelliti sono stati usati per effettuare un nuovo esperimento fisico destinato a mettere nuovamente alla prova la teoria di Einstein

Pubblicato

il

Nell’agosto 2014 un razzo ha lanciato il quinto e sesto satellite del sistema di navigazione globale Galileo, la risposta da 11 miliardi di dollari dell’Unione Europea al GPS degli Stati Uniti. Ma i festeggiamenti si sono trasformati in delusione quando è apparso chiaro che i satelliti erano stati lasciati alle “fermate” cosmiche sbagliate. Invece di essere collocati in orbite circolari ad altitudini stabili, erano rimasti bloccati in orbite ellittiche, inutili per la navigazione.

L’incidente, tuttavia, ha offerto una rara opportunità per un esperimento fisico fondamentale. Due gruppi di ricerca indipendenti – uno guidato da Pacôme Delva dell’Osservatorio di Parigi, in Francia, l’altro da Sven Herrmann dell’Università di Brema, in Germania – hanno monitorato i satelliti alla ricerca di “buchi” nella teoria generale della relatività di Einstein.

“La relatività generale continua a essere la descrizione più accurata della gravità, e finora ha resistito a un gran numero di test sperimentali e osservazionali”, dice Eric Poisson, fisico all’Università di Guelph, in Ontario, che non è stato coinvolto nelle nuove ricerche. Tuttavia, i fisici non sono stati in grado di fondere la relatività generale con le leggi della meccanica quantistica, che spiegano il comportamento dell’energia e della materia a scala molto piccola. “Questa è una ragione per sospettare che la gravità non sia ciò che ha descritto Einstein”, dice Poisson. “Probabilmente è una buona approssimazione, ma c’è dell’altro.”

La teoria di Einstein prevede che il tempo passi più lentamente vicino a un oggetto massiccio, e quindi un orologio sulla superficie terrestre dovrebbe ticchettare più lentamente rispetto a uno su un satellite in orbita. Questa

dilatazione temporale è nota come redshift gravitazionale. Qualsiasi sottile deviazione da questo modello potrebbe fornire ai fisici indizi per una nuova teoria che unifichi gravità e fisica quantistica.

I due satelliti Galileo, malgrado fossero poi stati spinti su orbite più vicine a quelle circolari, stavano ancora “salendo e scendendo” di circa 8500 chilometri due volte al giorno. I team di Delva e Herrmann hanno osservato per tre anni in che modo le variazioni di gravità che derivavano da questi spostamenti alteravano la frequenza degli orologi atomici superprecisi a bordo dei satelliti.

In un precedente test sul redshift gravitazionale – condotto nel 1976, quando il razzo suborbitale Gravity Probe-A fu lanciato nello spazio con un orologio atomico a bordo – i ricercatori avevano osservato che la relatività generale prediceva lo spostamento di frequenza dell’orologio con un’incertezza di 1,4 × 10 alla -4.

I nuovi studi, pubblicati lo scorso dicembre sulle “Physical Review Letters” (1, 2), hanno nuovamente verificato la previsione di Einstein e aumentato la precisione di un fattore 5,6. Così, per ora, la teoria centenaria continua a regnare.

————————–
(L’originale di questo articolo è stato pubblicato su “Scientific American” l’8 febbraio 2019





Licenza Creative Commons



Crediti :

le Scienze

Continua a leggere

Fisica

Un modello globale per le precipitazioni estreme

Piogge estreme in regioni del globo molto distanti tra loro possono avere un’origine comune. La scoperta di questo fenomeno e di un meccanismo che spiega il collegamento regolare di questi eventi di precipitazioni piovose permetterà di migliorare i modelli sia meteorologici sia climatici globali

Pubblicato

il

La Senna fuori dagli argini in seguito a piogge estreme. (© agefotostock / AGF)

Precipitazioni estreme che si verificano in regioni molto distanti del globo sono collegate fra loro secondo schemi specifici. Per esempio, precipitazioni estreme in Europa possono precedere di circa cinque giorni lo stesso fenomeno in India, senza che si verifichino fenomeni analoghi nelle regioni intermedie.

Questo non significa, osservano gli autori dello studio, che le piogge in Europa causino la pioggia in Pakistan e India, ma che fanno parte di uno stesso schema di circolazione atmosferica in cui le piogge europee sono innescate per prime.

La scoperta dell’esistenza di modelli globali su larga scala per eventi di precipitazioni estreme, pubblicata su “Nature”, permetterà di testare e migliorare i modelli meteorologici e climatici globali, portando a previsioni più accurate.

Niklas Boers, del Potsdam Institute for Climate Impact Research, e colleghi hanno scomposto il globo in un numero elevato di”spicchi”, e su questa griglia hanno riportato le informazioni relative alle precipitazioni estreme, basandosi sui dati satellitari ad alta risoluzione dal 1998 in poi. Infine, i ricercatori hanno calcolato quanto ciascuno spicchio fosse in sincronia o sfalsato rispetto agli altri, rilevando per esempio che gli eventi estremi nei monsoni estivi dell’Asia meridionale sono in media legati a eventi nelle regioni dell’Asia orientale, dell’Africa, dell’Europa e del Nord America.

precipitazioni estreme

Le linee rosse che partono dal nord dell’India mostrano modelli meteo locali, mentre le linee blu mostrano modelli globali che collegano eventi di precipitazioni estreme. In particolare, le strutture blu sopra l’Europa indicano che le precipitazioni estreme nell’India settentrionale possono essere previste da eventi precedenti in Europa. (Cortesia Boers et al. 2019)

Successivamente, combinando questi dati con le conoscenze sui movimenti dell’atmosfera, gli scienziati hanno individuato un possibile meccanismo in grado di spiegare le associazioni regolari rilevate. Queste regolarità sembrano essere prodotte dalle cosiddette onde di Rossby, movimenti impetuosi di grandi masse d’aria grandi che si spostano come correnti a getto sotto  forma di onde di enorme lunghezza d’onda (anche di 1500 chilometri), indotte dal movimento di rotazione terrestre.

La mia speranza – ha detto Boers – è che i nostri risultati aiutino a prevedere le precipitazioni estreme e le relative inondazioni e frane soprattutto nelle aree tropicali, come il nord-est del Pakistan, il nord dell’India e in Nepal. Negli ultimi anni ci sono stati diversi eventi di questo tipo, con conseguenze devastanti, come l’alluvione del 2010 in Pakistan”.





Licenza Creative Commons



Crediti :

le Scienze

Continua a leggere

Chi Siamo

Dicono di noi

5 star review  Mitici

thumb Edoardo Maria Mollica
12/23/2013

Newsletter

NASA TV

SPACE X

Facebook

I più letti