Contattaci

Fisica

Sale rosa dell’Himalaya? No grazie

Pubblicato

il

Il sale accompagna la nostra cucina da millenni e ogni italiano ha in cucina una o più confezioni di quei cristalli bianchi, di grandezza e forma variabile, che utilizziamo per insaporire i cibi e per molte altre applicazioni. Negli ultimi anni però si sono diffusi sul mercato anche sali di colori variopinti: rossi, grigi, neri ma soprattutto rosa. Ultimamente infatti è divenuto molto popolare, con il nome di sale dell’Himalaya, un sale proveniente dal Pakistan di un bel color rosa.

A dispetto del nome questo minerale non proviene dalla catena dell’Himalaya ma dal salt range, nella provincia del Punjab in Pakistan, un sistema di montagne che si estende per circa 200 km, a qualche centinaio di km dalla famosa catena montuosa. In queste montagne sono presenti dei depositi di sale stimati in più di 10 miliardi di tonnellate e numerose miniere, sfruttate sin dall’antichità, che producono circa 600.000 tonnellate di sale all’anno. Nell’estremità orientale del salt range, a 160 km dalla capitale Islamabad, c’è la miniera di Khewra, che produce sale dal 320 a.C..

Khewra è la seconda più grande miniera di sale al mondo, e la più antica del continente asiatico, con sette strati salini alti cumulativamente 150 metri di colori che vanno dal trasparente al bianco al rosa al rosso carne. Le gallerie si estendono per più di 40 km su 18 livelli e un’area di 110 km quadri. La miniera produce 325.000 tonnellate di sale ogni anno. Viene estratto solo il 50% del sale (più precisamente il  minerale halite o salgemma), mentre il resto viene lasciato come pilastri interni alla miniera per sostenere la struttura.

Rosso ferro

Se prendiamo 1 kg di acqua di mare e la facciamo evaporare completamente otterremo circa 35 grammi di sali, di cui la parte del leone la fa il cloruro di sodio, per il 77% circa. Dei sali rimanenti, il 99% è costituito da sali di calcio e magnesio. Il restante sono tracce di praticamente quasi tutti gli elementi noti della tabella periodica, di scarso valore nutrizionale. Nelle miniere di sale troviamo invece i residui di mari e oceani prosciugatisi milioni di anni fa, e che in seguito possono aver subito altri processi geologici tali da alterarne la composizione, e quindi oltre al cloruro di sodio possono essere presenti altre sostanze in quantità non trascurabile. Sono queste impurezze, e in particolare gli ossidi di ferro, a donare al sale rosa il suo colore.

Ho consultato alcuni articoli scientifici che riportano le analisi chimiche del sale rosa di Khewra, e vi è una enorme variabilità nel contenuto di minerali. Il ferro, a seconda del campione analizzato, può essere presente da 0.24 mg/kg fino a 50 mg/kg, duecento volte di più. Vi ho detto che nella miniera sono presenti strati di colore diverso, dal bianco al rosso, quindi non stupisce affatto che campioni diversi diano risultati diversi. Ed è possibile che anche all’interno di uno strato vi siano variazioni notevoli. D’altra parte, se osservate bene il vostro sale rosa, vedrete anche voi benissimo che vi sono pezzi di colore diverso. Dalla ciotola sopra ho provato a separare cristalli di colore diverso, ed è presumibile che se analizzassi i pezzi bianchi troverei una composizione diversa da quelli rossi.

Sale rosa dell'Himalaya

 

Se pensate però che, dato che il comune sale da tavola non contiene praticamente ferro, il sale rosa sia una buona fonte di ferro. Beh dovete ricredervi.

Ferro e Sodio

Ogni giorno l’italiano adulto mediamente consuma dieci grammi di sale. Sia aggiunto direttamente a tavola sia negli alimenti e bevande che consuma. Dieci grammi di sale contengono circa 4 grammi di sodio, elemento di cui abbiamo bisogno. Il nostro corpo però non ne necessita così tanto: in condizioni normali eliminiamo giornalmente 0.1-0.6 grammi di sodio, che dobbiamo quindi reintegrare. Il resto è superfluo e se la nostra dieta è troppo ricca di sodio ci possono essere delle ripercussioni sulla nostra salute. Infatti le raccomandazioni sanitarie attuali consigliano di ridurre a 6 i grammi di sale assunti giornalmente. In pratica, poiché di quei 10 grammi giornalieri, dai 3 ai 5 sono aggiunti al cibo  direttamente da noi o mentre cuciniamo, potremmo benissimo assumere tutto il sodio necessario anche senza salare nulla, anche se il sapore ovviamente ne risentirebbe. È sicuro però che, con i grandi consumi attuali di sale, è possibile sicuramente ridurne l’utilizzo, senza doverlo eliminare del tutto e senza grosse ripercussioni sui sapori.

Ma torniamo al ferro: supponiamo di sostituire quei cinque grammi giornalieri di sale bianco che usiamo in cucina con del sale dell’Himalaya. Poiché un chilogrammo di sale rosa contiene da 0.2 a 50 mg di ferro, assumeremmo giornalmente da 0.001 mg a 0.25 mg di ferro attraverso quei cinque grammi di sale. È poco? È tanto?

Agli adulti maschi si raccomanda l’assunzione di 10 mg di ferro al giorno, mentre per le donne si va dai 27 in gravidanza ai 18 da adulte per ridursi a 10 per le donne anziane. Capite bene quindi che l’assunzione di ferro dal sale rosa è, numeri alla mano, del tutto trascurabile. Forse otterremmo qualche cosa di più succhiando un chiodo arrugginito ;). È lo stesso discorso che avevo fatto cercando di spiegare perché chi vanta “superiori proprietà nutrizionali” dello zucchero di canna ci marcia contando che nessuno vada a fare i calcoli (oppure è semplicemente inaffidabile). Una persona con una dieta bilanciata non ha bisogno di assumere ferro dal sale o dallo zucchero, mentre se si ha una carenza non sono certo le infime quantità presenti nel sale, o nello zucchero, che possono aiutare. Possiamo assumere il ferro da molti altri alimenti dove è più disponibile: 100 grammi di fegato di vitello o 100 grammi di fagioli ne contengono 9 mg mentre un tuorlo d’uovo ne contiene 5 mg.

Discorso analogo se andiamo ad analizzare il contenuto di altri minerali, come Zinco o Manganese, di cui ne dobbiamo assumere quantità dell’ordine dei milligrammi.

Sempre senza numeri!

Questo giochino di magnificare le proprietà nutrizionali di un alimento senza fornire dei numeri di riferimento è fin troppo diffuso. Soprattutto in rete. Spesso mi arrabbio quando leggo che questo o quell’alimento sono “ricchi di…”, senza numeri. A volte è fatto in modo innocente, per non appesantire il discorso, ma altre volte no. Da scienziato sono abituato a “misurare il mondo” con i numeri, non con le parole. Però i numeri, purtroppo, rendono molto meno “appetibile” un articolo, se non addirittura scoraggiarne la lettura per alcuni lettori, mentre scrivere che la menta o il pepe sono ricchi di ferro rende subito più “salutista e nutriente” una ricetta. Ed è vero che le foglie di menta (10 mg/100 g) o il pepe (11 mg/100g) contengono tanto ferro. Ma quanto pepe e quanta menta utilizzate in una ricetta? Se sostituite in un dolce lo zucchero bianco con quello di canna demerara, o col mascobado, o condite le patate arrosto con il sale integrale invece che con quello bianco purificato, non pensiate che questo le trasformi magicamente in “ricette salutiste”.

Un essere umano adulto deve assumere 0.15 millligrammi di Iodio al giorno, e in molte zone d’Italia e del mondo vi è una carenza di questo elemento nell’alimentazione, ed è per questo che si consiglia il consumo di sale iodato, la cui aggiunta di iodio al sale è stata tarata per poter assumere tutta la quantità di iodio che ci serve da 5 grammi di sale. Nonostante quanto alcuni scrivano (sempre senza numeri alla mano), il sale integrale non contiene una quantità sufficiente di iodio, ed è per questo che è necessario integrarlo.

Alcuni siti sostengono che il sale rosa dell’Himalaya contenga già una quantità di Iodio sufficiente per i nostri fabbisogni. Purtroppo, vedi la sfiga, tra tutte le impurità presenti nel sale rosa, non vi è proprio traccia dello iodio. Questo è il motivo per cui nella vicina India è addirittura vietata la vendita di questo sale o di qualsiasi altro sale non iodato, a seguito di una campagna nazionale volta a eliminare la carenza di iodio nella popolazione.

E il resto?

Molto spesso del sale rosa si magnifica il fatto che contenga moltissimi elementi, e non solo cloruro di sodio come il sale raffinato da tavola. In realtà come vi ho spiegato, numeri alla mano, non vi sono motivazioni di tipo nutrizionale valide per usare questo sale, e vado letteralmente in bestia quanto lo sento descrivere come “protagonista assoluto del benessere” o con tutta una serie di presunti benefici (completamente inventati, senza uno straccio di riferimento scientifico) da chi viene presentato come “nutrizionista” (notevole gli “elementi della tavola pitagorica” al minuto 1:23 del video). Se cercate in rete trovate letteralmente centinaia di articoli che magnificano le proprietà di questo sale; anche purtroppo siti di biologi, medici o nutrizionisti, tutti rigorosamente senza uno straccio di riferimento scientifico. Ma soprattutto tutti che ripetono a pappagallo da bufala degli 84 elementi che servirebbero al nostro organismo. Viene addirittura spacciato per “integratore naturale”. La Società Italiana di Nutrizione Umana riporta i livelli dei 15 (quindici!) elementi nutrienti che devono essere assunti giornalmente. Alcuni altri, come il Cobalto, li assumiamo solo in forma organica (nella vitamina B12), mentre di qualche altro o è ancora dibattuto il suo reale ruolo nel nostro organismo oppure ne abbiamo bisogno in tracce talmente piccole che non sono ancora state determinate. In ogni caso per quello che sappiamo oggi non superiamo i 24 elementi. E gli altri 60 per arrivare al numero magico 84? Che fanno? A che servono? Provate a chiederlo a chi continua a propagare questa storia e vediamo che vi risponde.

Il sale rosa contiene sì un sacco di altre cose oltre al cloruro di sodio, anche se non esiste nessuna analisi chimica pubblicata su una rivista scientifica che riporti i mitologici 84 elementi. Questa caratteristica però, lungi dall’essere necessariamente positiva come viene invece strombazzata, merita un approfondimento. Nella letteratura scientifica ho trovato tre articoli abbastanza recenti che analizzano la presenza di alcuni elementi. Le analisi pubblicate mostrano come il sale di Khewra possa contenere delle concentrazioni non trascurabili di metalli come Rame, Zinco, Cadmio, Nickel, Manganese, Piombo, Cobalto, Tellurio, Bario, Alluminio e altri.

Alcuni di questi, come il Rame o lo Zinco, in piccole dosi sono utili per il funzionamento del nostro organismo. Purtroppo come già detto il sale rosa non ne contiene abbastanza.

Altri invece, come il Cadmio o il Piombo, (nei famosi 60 che mancano per arrivare a 84), non solo non sono assolutamente necessari, ma sono addirittura tossici e si accumulano nell’organismo. Mi soffermo per brevità solo su uno di questi.

Il Cadmio

Il Cadmio è un metallo estremamente tossico, che può causare danni ai reni, difetti al sistema riproduttivo, è teratogeno e l’OMS/IARC lo classifica come cancerogeno di classe 1. Per questo motivo la FAO e l’OMS (Codex alimentarius) hanno fissato in 0.5 mg/kg il massimo residuo di cadmio che può essere presente nel sale alimentare. Le analisi pubblicate in letteratura sono molto variabili, dipendendo molto dalla qualità e dalla provenienza, all’interno della miniera, del campione, con valori di Cadmio che vanno da zero fino a 9 mg/kg, quasi venti volte la dose considerata ammissibile. Data la variabilità esistente, è difficile conoscere il contenuto di metalli pesanti nel sale rosa venduto in Italia, è non è affatto detto che a una minore colorazione rossa corrisponda anche una minore concentrazione degli altri contaminanti.

In ogni caso, data la possibilità di assumere quantità piccole ma non trascurabili di metalli pesanti che si possono accumulare nell’organismo, senza alcun altro beneficio nutrizionale, non c’è alcun motivo per preferire questo sale al normale, e praticamente privo di metalli pesanti, sale bianco raffinato.

C’è da preoccuparsi se usate regolarmente il sale rosa, perché ve lo hanno regalato e non volete buttarlo oppure perché avete creduto in buona fede a qualche imbonitore con camice bianco? Secondo l’OMS possiamo tollerare 500 microgrammi di Cadmio alla settimana. Consideriamo il caso del sale rosa più contaminato di Cadmio, con 9 mg/kg. Assumendone 5 grammi al giorno stiamo assumendo 315 microgrammi di Cadmio alla settimana, inferiore al limite consigliato dall’OMS. Quindi state tranquilli che non rischiate l’avvelenamento.

Ma perché dovremmo assumere 500, 315 o anche solo 100 microgrammi di Cadmio? Solo per seguire una stupida moda?

Non riduce l’ipertensione, non la ritenzione idrica, non ci sono vantaggi nell’usarlo. Contiene impurezze che, seppure non in dosi da farlo risultare tossico, di sicuro non servono al nostro organismo e che comunque sarebbe meglio non assumere. L’alternativa? Un buon sale bianco quasi puro, da salina o salgemma, che costa anche meno.



Licenza Creative Commons




 

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
Clicca per commentare

Leave a Reply

Per commentare puoi anche connetterti tramite:



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Fisica

Da una pulsar binaria un’altra conferma alla teoria di Einstein

Una nuova osservazione ha confermato l’effetto Lense-Thirring, un effetto di trascinamento dello spazio-tempo da parte delle masse in rotazione previsto dalla teoria della relatività generale: si tratta in questo caso di un sistema binario di stelle massicce, che emette radiazione elettromagnetica pulsata. E’ la prima verifica del fenomeno ottenuta con un sistema di tipo stellare

Pubblicato

il

Ilustrazione dell'effetto Lense-Thirring misurato nello studio (©Mark Myers, OzGrav ARC Centre of Excellence)

L’ennesima conferma sperimentale della teoria della relatività generale di Einstein viene dallo studio di una pulsar, un sistema binario di stelle massicce che emette una radiazione pulsante, condotto da Matthew Bailes,dell’ARC Centre of Excellence of Gravitational Wave Discovery (OzGrav) e colleghi, che firmano un articolo su “Science”.

Uno dei fondamenti di questa teoria è che le tre dimensioni spaziali e la dimensione temporale sono considerate un tutt’uno, uno spazio-tempo quadridimensionale. E lo spazio-tempo viene deformato dalle masse proporzionalmente alla loro entità. Si può immaginare questo effetto pensando a una palla da biliardo posata sul lenzuolo steso su un letto. Se poi si posa sul lenzuolo una seconda massa, una palla da golf per esempio, quest’ultima si avvicinerà alla prima cadendo nella deformazione che ha creato. Questo è in sintesi il modello della gravitazione rappresentato dalla teoria einsteiniana, pubblicata nel 1916.

Già qualche anno dopo, due matematici austriaci josef Lense e Hans Thirring, trovarono un’interessante conseguenza della relatività generale. Secondo le leggi contenute nella teoria, una massa in rotazione su se stessa avrebbe dovuto trascinare con sé lo spazio-tempo, con un effetto lieve ma comunque rilevabile, in linea di principio.

Il fenomeno, chiamato effetto Lense-Thirring, o effetto di trascinamento, è stato rilevato sperimentalmente negli anni 2000 per quanto riguarda l’ambiente intorno alla Terra grazie ai satelliti LAGEOS, anche se con un’incertezza sperimentale ancora non soddisfacente, considerata anche l’esiguità della massa del nostro pianeta. In questi casi, si misura il fenomeno di precessione dell’asse di rotazione giroscopi dei satelliti, dovuto proprio all’effetto Lense-Thirring.

Il trascinamento è però molto più evidente nel caso di oggetti molto massicci che si trovano nel cosmo. L’ha dimostrato nel 2016 un gruppo internazionale di ricerca guidato da Adam Ingram, dell’Università di Amsterdam, nel caso del disco di accrescimento di un buco nero indicato dalla sigla H1743-322, grazie alle osservazioni condotte con i telescopi spaziali per raggi X XMM-Newton dell’ESA e NuSTAR della NASA.

Quasi 20 anni fa, il gruppo di Bailes iniziò ad osservare con il radiotelescopio CSIRO Parkes 64 un sistema binario chiamato PSR J1141-6545, formato da due stelle che ruotano l’una attorno all’altra a velocità sorprendenti. Uno dei due oggetti è una nana bianca, delle dimensioni della Terra ma 300.000 volte più densa. L’altra è una stella di neutroni che, con un diametro di soli 20 chilometri, è circa 100 miliardi di volte la densità della Terra. Ciò significa che l’effetto Lense-Thirring è 100 milioni di volte più intenso, e rappresenta quindi un’occasione unica per studiare gli effetti della relatività generale.

Dato il rapido regime di rotazione, i sistemi binari di questo tipo appaiono come una radiazione elettromagnetica pulsata, e vengono anche indicati per questo pulsar. Misurando con estrema precisione la frequenza di pulsazione, gli astrofisici possono ricavare i parametri orbitali del sistema, e da ciò calcolare la precessione del loro asse di rotazione. Dopo aver eliminato tutti i possibili fattori che possono influenzare questa precessione, Bailes e colleghi hanno misurato il contributo relativistico, risultato in buon accordo con le previsioni della teoria di Einstein. Il successo della ricerca, sottolineano gli autori, è che si tratta della prima conferma dell’effetto di Lense-Thirring ottenuta con un sistema di tipo stellare.



Licenza Creative Commons




Crediti :

le Scienze

Continua a leggere

Fisica

Come estrarre ossigeno dalla polvere lunare

L’Agenzia spaziale europea è riuscita nell’impresa: ha creato un prototipo di impianto di estrazione dell’ossigeno dalle polveri lunari. Un passo importante per futuri viaggi spaziali e per aumentare la durata della permanenza umana sul satellite

Pubblicato

il

Rappresentazione artistica di una possibile base di attività sulla Luna (foto: Esa)

Ormai è certo: nel 2024 torneremo sulla Luna ed ora è aperta la caccia ai turisti dello spazio che accompagneranno il primo privato cittadino che andrà sulla Luna, il milionario giapponese Yusaku Maezawa. Ma i motivi per studiare la luna e la sua composizione sono tanti e non riguardano solo i viaggi spaziali. L’Agenzia spaziale europea (Esa) ha già pianificato una missione che avrà l’obiettivo di studiare la possibilità di riuscire a estrarre alcuni elementi, come ossigeno e acqua, naturalmente presente nel suolo, o meglio nella regolite, una sorta di polvere che ricopre la Luna. Oggi, l’Esa informa che ha messo a punto un prototipo per estrarre l’ossigeno dalle polveri lunari. Ecco perché è un risultato importante.

Polveri lunari per ottenere ossigeno

La regolite è un materiale granuloso presenti sul suolo lunare – e non solo, si trova anche sulla Terra, su Marte, su altri pianeti, asteroidi e lune. Questo materiale è composto da polveri, detriti, frammenti di rocce e gas, e si è formata in seguito all’impatto di meteoroidi piccoli e spessi, al bombardamento costante di frammenti di materiale celeste. I campioni lunari riportati a terra dalle missioni hanno mostrato che questa polvere è abbondante e per questo sceglierla come candidato per produrre ossigeno potrebbe essere una scelta valida.

Poter ottenere ossigeno dalle polveri lunari potrebbe favorire i futuri viaggi e la nostra permanenza sulla Luna, un tema sempre più attuale. Per questo gli scienziati si sono già messi all’opera e un gruppo guidato dall’università di Glasgow ha recentemente spiegato come procedere.

Un nuovo impianto

Oggi l’Esa annuncia di aver messo a punto un impianto per estrarre l’ossigeno dalle polveri lunari. “Avere la nostra strumentazione ci permette di concentrarci sulla produzione di ossigeno”, commenta Beth Lomax dell’università di Glasgow, “misurandolo con uno spettrometro di massa non appena estratto dal ‘simulante’ di regolite”. Il simulante di regolite è un materiale terrestre che serve per creare un composto quanto più possibile somigliante alla regolite e che è utile per gli esperimenti e per studiare le possibili condizioni di permanenza sulla luna.

L’estrazione dell’ossigeno dalla polvere di Luna

Inizialmente l’ossigeno generato nel processo veniva rilasciato come biossido di carbonio e monossido di carbonio. “Questo significa che i reattori non sono progettati per resistere all’ossigeno stesso”, spiega Lomax, che racconta che gli scienziati hanno riprogettato una nuova versione per avere ossigeno libero da misurare. Il nuovo impianto è anche silenzioso e l’ossigeno viene scaricato in un tubo apposito. Verrà poi accumulato non appena i ricercatori realizzeranno il prossimo aggiornamento delle apparecchiature.

Per ottenere l’ossigeno i ricercatori si sono serviti dell’elettrolisi per separare l’idrogeno e l’ossigeno che compongono una molecola d’acqua. Il tutto avviene attraverso la presenza di cloruro di calcio, che funge da elettrolita, riscaldato a 950 °C. La separazione è avvenuta e l’ossigeno è stato estratto.

“Il processo di produzione lascia dietro di sé un groviglio di metalli diversi”, aggiunge Alexandre Meurisse, ricercatore dell’Esa, “e questa è un’altra linea di ricerca importante per vedere quali sono le leghe più utili che potrebbero essere prodotte a partire dal materiale e quali applicazioni potrebbero avere”. La precisa combinazione di metalli, specifica l’esperto, potrebbe dipendere dal punto in cui vengono raccolte le polveri lunari, dato che ci potrebbero essere importanti differenze.

Verso la Luna e Marte

L’obiettivo finale, concludono i ricercatori, potrebbe essere realizzare un impianto simile direttamente sulla Luna, così da avere direttamente ossigeno disponibile. “Stiamo spostando il nostro approccio ingegneristico verso la possibilità di un uso sistematico delle risorse lunari in situ”, conclude Tommaso Ghidini dell’Esa, “per fornire un metodo operativo ideale e tecnologie essenziali come questa, affinché sia possibile la presenza umana sulla Luna e un giorno forse anche su Marte.



Licenza Creative Commons




Crediti :

wired

Continua a leggere

Fisica

Arriva il primo “robot vivente”, creato con cellule staminali

Deriva da cellule staminali di rana, il nuovo robot vivente non è né una macchine tradizionale né una nuova specie animale. Ecco cos’è e perché potrebbe essere molto utile in medicina e per combattere l’inquinamento

Pubblicato

il

In futuro i robot saranno sempre più spesso ispirati alle nostre caratteristiche biologiche. Ma oggi il mondo delle tecnologie ci stupisce con una proposta finora inedita: un gruppo di ricerca ha creato un nuovo prototipo che non solo prende ispirazione dalla biologia ma che  è interamente costituito da materiale biologico. I creatori, dell’università del Vermont e di Tuft, parlano per questo di robot vivente, primo nel suo genere, una macchina minuscola, per niente somigliante all’idea che abbiamo di robot – quella dell’automa. Le applicazioni potrebbero riguardare diversi campi, dalla ricerca delle contaminazioni radioattive ad usi clinici. I risultati sono pubblicati su Proceedings of the National Academy of Sciences.

Negli anni scorsi ci sono stati dei tentativi anche di successo di creare organismi viventi semi-sintetici. In questo caso parliamo di un oggetto molto diversi, come spiegano gli scienziati, che hanno progettato e realizzato la “prima macchina biologica interamente messa su a partire dal nulla”, o meglio da cellule. I ricercatori la hanno chiamata xenobot perché deriva dall’elaborazione di cellule staminali della rana africana Xenopus laevi, spesso utilizzata come modello animale nella ricerca in biologia. “Il dna dell’organismo realizzato è al 100% quello della rana”, specifica Michael Levin, uno dei due coordinatori dello studio, ricercatore all’università di Tuft, “ma non è una rana”“Non sono né robot tradizionali né nuove specie animali”, sottolineano i ricercatori, che chiariscono che si tratta di nuova classe di artefatti, oggetti artificiali che sono organismi viventi e programmabili.

Gli scienziati hanno progettato i nuovi robot con i supercomputer dell’università del Vermont e poi li hanno assemblati e testati all’università Tuft. Prima hanno prelevato le cellule staminali dagli embrioni di rana, separate in singole cellule e fatte crescere in laboratorio, in una sorta di incubatrice per farle moltiplicare e differenziare in tessuti diversi. Successivamente le hanno tagliate e aggiuntate attraverso l’uso di un microscopio per ottenere il design desiderato, selezionato col computer. In questo modo, si sono formate delle cellule dalla forma inedita in natura che hanno cominciato a funzionare e lavorare insieme. Qui il video.

La loro forma è quasi sferica. La pelle ha un’architettura abbastanza statica, mentre il muscolo cardiaco è più attivo: le sue contrazioni sono tali da generare movimenti ordinati, che seguono quanto scelto in base alla progettazione del computer. In pratica si tratta di materia vivente assemblata e programmata per lavorare in un determinato modo, selezionato dagli autori.

I risultati mostrano che questi organismi si muovono in modo coerente e che possono spostarsi e sondare l’ambiente acquoso in cui si trovano per giorni o settimane. Tuttavia, anche loro falliscono: se si ribaltano somigliano a coleotteri capovolti che non sono più in grado di muoversi. Inoltre, gli autori hanno osservato che si spostano creando un cerchio e alcuni sono stati progettati per creare una struttura con un buco al centro. “È un passo avanti verso l’uso di organismi creati dal computer per l’invio intelligente di farmaci”, ha spiegato Joshua Bongard dell’università del Vermont, che sottolinea che sono completamente biodegradabili e una volta aver assolto al loro compito, dopo una settimana, sono solo cellule di pelle morta.

Ma molti sono preoccupati dei possibili sviluppi. “Questa paura non è irragionevole”, aggiunge Levin. E “questo studio fornisce un contributo diretto per comprendere meglio ciò di cui le persone hanno paura, ovvero le conseguenze indesiderate”. Se inizieremo a manipolare sistemi complessi che non conosciamo, spiega l’esperto, potremmo avere esiti inattesi e non desiderati. Per questo capire in che modo la complessità emerge da sistemi semplici sarà una sfida fondamentale del futuro.



Licenza Creative Commons




Continua a leggere

Chi Siamo

Vuoi ricevere le notizie?

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu [...]

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom [...]

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du [...]

Nature, Published online: 08 April 2020; doi:10.1038/d41586-020-00154-wUpdates on the respiratory il [...]

Nature, Published online: 08 April 2020; doi:10.1038/s41586-020-2183-2Phosphorylation of INSIG1 and [...]

Nature, Published online: 08 April 2020; doi:10.1038/s41586-020-2189-9Using annual projections of te [...]

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio [...]

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a [...]

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur [...]

Sismografo Live

Sismi Italia tempo reale

Terremoti Importanti

Aggiornato Wed 8 Apr 20:21:33 (UTC)

NASA TV

SPACE X

Archivio

LunMarMerGioVenSabDom
 12345
6789101112
13141516171819
20212223242526
27282930 

 

 

 

 

 

I più letti