Contattaci

Lab

Un computer quantistico per generare contemporaneamente tutti i futuri possibili

Non si tratta di prevedere il futuro ma di produrre simultaneamente, attraverso un complesso algoritmo quantistico, tutti i potenziali esiti di una determinata operazione, per poter scegliere al meglio. Un gruppo di fisici è riuscito a realizzare un dispositivo che genera tutti questi futuri

Pubblicato

il

È possibile generare contemporaneamente tutti i futuri possibili? E osservarli tutti, per scegliere quello migliore? Nella realtà macroscopica, quella che conosciamo e che è dominata dalle leggi della fisica classica, sicuramente no. Ma gli scienziati, oggi, hanno provato a farlo nel mondo invisibile dell’infinitamente piccolo attraverso un computer quantistico. Un gruppo coordinato dall’università di Griffith ha sviluppato un prototipo di dispositivo quantistico che è in grado di generare contemporaneamente tutti gli scenari futuri possibili – in questo caso non si tratta di situazioni reali ma di stati quantistici.

Il risultato è pubblicato su Nature Communications.

In ogni istante moltissime possibilità

Ogni scelta che ci si presenta può portare a diversi esiti: ad esempio nel film Sliding doors si vedono scorrere due futuri molto diversi. Moltiplicate il tutto per il numero di scelte che si presentano in ogni istante e avrete un’idea di quanti possibili futuri esistono ogni giorno. “Quando pensiamo al futuro”, sottolinea Mile Gu della Nanyang Technological University a Singapore, che ha sviluppato l’algoritmo quantistico alla base del prototipo, “ci confrontiamo con una vasta gamma di possibilità. Queste possibilità crescono esponenzialmente in ogni istante, mano a mano che si va nel futuro, come spiega l’esperto. “Anche se avessimo soltanto due diverse strade da scegliere ogni minuto, in meno di mezz’ora si sarebbero creati 14 milioni di possibili futuri. Insomma, si tratterebbe di un mare di futuri che non conosciamo.

Una sovrapposizione quantistica

Partendo da queste considerazioni matematiche, gli autori hanno sviluppato un algoritmo che possa esaminare tutti questi futuri. Come? Attraverso una sovrapposizione quantistica, ovvero studiando una sovrapposizione di stati fisici, puramente teorici. È quanto avviene nel caso ampiamente studiato del gatto di Schrödinger, che si trova in una scatola e che è contemporaneamente vivo e morto: lo stato di vita e quello di morte rappresentano una somma matematica e sono entrambi possibili con la stessa probabilità. E soltanto quando si verifica un intervento dall’esterno, cioè un osservatore apre la scatola – in altre parole si compie una scelta – si determina con certezza se il gatto è vivo oppure morto. Questo è quanto hanno realizzato i ricercatori, ma non solo con due futuri possibili, ma con tanti futuri. Gli autori hanno realizzato un dispositivo che potesse riprodurre questa sovrapposizione quantistica. Per farlo hanno sviluppato un particolare processore quantistico, in cui i possibili esiti (dunque i futuri) di un determinato processo decisionale sono rappresentati dalla posizione dei fotoni, i quanti di luce.

Tanti futuri possibili

Gli scienziati hanno dimostrato che il dispositivo riproduce vari futuri possibili, ognuno con la sua probabilità di accadere. In altre parole,  realizza una sovrapposizione quantistica di multipli futuri potenziali. E ciascun futuro è associato a un certo peso, ovvero ad una probabilità che possa verificarsi. Un po’ come quando il gatto di Schrödinger era vivo e morto con una probabilità identica per entrambi i futuri possibili. Tuttavia, in questo caso gli stati studiati sono ben più di due, e ognuno è associato ad un peso (una probabilità) corrispondente. Attualmente il prototipo riesce a simulare al massimo 16 futuri possibili, mentre in linea teorica l’algoritmo sottostante ne può generare numerosissimi. E il risultato va verso lo sviluppo di computer quantistici ancora più potenti.

Per determinare il funzionamento del dispositivo gli autori si sono basati sulle teorie del premio Nobel per la fisica Richard Feynman. L’idea è questa: quando una particella viaggia da un punto A ad un punto B, non segue necessariamente un singolo percorso. “Al contrario, percorre simultaneamente tutte le strade possibili che la collegano al punto di arrivo”, spiega la coautrice Jayne Thompson della Nanyang Technological University a Singapore. “Il nostro lavoro studia in maniera estesa questo fenomeno e lo manipola in modo da realizzare un modello statistico di questi futuri possibili”.

Un aiuto per l’intelligenza artificiale

“Il nostro approccio consiste nel mettere insieme una sovrapposizione quantistica di tutti i possibili futuri per ciascun processo decisionale”, aggiunge Farzad Ghafari, ricercatore dell’Università di Griffith, che ha coordinato lo studio. “Facendo interferire queste sovrapposizioni l’una con l’altra, riusciamo ad evitare di osservare singolarmente ciascun futuro possibile, uno alla volta”. L’autore spiega che molti algoritmi di intelligenza artificiale, sviluppati oggi, riescono a osservare che piccoli cambiamenti nel loro comportamento possono portare a esiti futuri molto differenti. “Per questo, le nostre tecniche – chiarisce Ghafari – possono permettere a questi sistemi quantistici di intelligenza artificiale di imparare in maniera più efficiente l’effetto delle loro azioni”. In altre parole, in futuro questi sistemi potrebbero essere in grado di studiare le conseguenze delle loro azioni e regolarsi in base a questa conoscenza: un obiettivo da sempre agognato da noi esseri umani, ma per noi impossibile da raggiungere.





Licenza Creative Commons



Crediti :

Wired

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Lab

Prime terapie sperimentali con cellule geneticamente modificate

Si tratterebbe di uno dei primissimi trial clinici con cellule modificate geneticamente ma, chiaramente, non sarebbe la prima modifica di genoma umano con CRISPR-Cas9.

Pubblicato

il

È complicato fare il proprio lavoro quando ci si trova a dover continuamente cambiare rotta per via di ostacoli piazzati sul percorso, ma ciò non vuol dire che non sia possibile raggiungere comunque traguardi importanti. Anzi, è quello che è sempre accaduto con la scienza, abituata a zigzagare tra i paletti ideologici che, neanche a dirlo, provengono principalmente dalle alte sfere religiose, ma che nonostante tutto non arresta i suoi progressi. Un esempio è quello della ricerca sulle cellule staminali, castrata in alcuni Paesi da legislazioni che impediscono di utilizzare la principale fonte di questo tipo di cellule: i pre-embrioni. In Italia il relitto della famosa legge 40 vieta esplicitamente la sperimentazione su di essi, ivi compresi quelli già prodotti e non impiantabili che non possono nemmeno essere distrutti.

Nel frattempo si studia comunque come intervenire con tecniche di ingegneria genetica per modificare il genoma nelle cellule di qualunque tipo, e molto promettente si sta rivelando il sistema di editing genetico CRISPR-Cas9 che recentemente ha iniziato a essere sperimentato anche sulle cellule umane. È di questi giorni infatti la notizia che negli Stati Uniti è partita una sperimentazione basata su CRISPR-Cas9 su 18 volontari affetti da una patologia rara, l’amaurosi congenita di Leber, caratterizzata da una mutazione genetica che può portare l’individuo alla cecità a causa di una progressiva degenerazione dei fotorecettori della retina. La sperimentazione riguarda una particolare forma di questa malattia denominata Lca10, non trattabile con l’inserimento del gene RPE65 che risulta invece efficace in altre forme.

Si tratterebbe di uno dei primissimi trial clinici con cellule modificate geneticamente ma, chiaramente, non sarebbe la prima modifica di genoma umano con CRISPR-Cas9. Da tempo, infatti, sempre negli Usa si testa l’editing genetico di cellule umane da pazienti oncologici o affetti da malattie genetiche, che naturalmente saranno i primi futuri destinatari di questo tipo di trattamenti potenzialmente risolutivo. Sempre nella speranza che vengano progressivamente abbattute quelle barriere ideologiche che facendo leva su timori per lo più non giustificati, mediante descrizione di scenari distopici con laboratori come fabbriche di cloni umani, impediscono di sfruttare tecniche che, in particolare se utilizzate su staminali, potrebbero realmente risolvere molti problemi e non solo di tipo patologico. Basti pensare alla propaganda no-Ogm, secondo cui qualunque tipo di intervento genetico sulle piante, che pure potrebbe risolvere molti dei problemi alimentari e ambientali, sarebbe eticamente sbagliato.

Intendiamoci, non è che si voglia auspicare una sorta di Far West scientifico, è chiaro che una regolamentazione è necessaria ed è altrettanto chiaro che qualunque regolamentazione sarebbe in parte influenzata da questioni etiche. Ma la situazione attuale vede una prevalenza delle questioni etiche, soprattutto ideologiche, a scapito di argomentazioni scientifiche. Nel frattempo si muore. Di malattie e anche di fame. Un video realizzato da The Guardian, solo in inglese ma sottotitolato, spiega in pochi minuti il funzionamento della tecnica CRISPR-Cas9 e spiega anche perché sarebbe un errore non proseguire nella ricerca in questo senso, pur con tutte le opportune limitazioni del caso. Perché l’ideologia applicata non cura le persone. L’ideologia religiosa è quella che le persone piuttosto le uccide, come nel caso delle minacce dei talebani in Pakistan a chi pratica le vaccinazioni anti-polio. E a chi suona musica a volume troppo alto.





Licenza Creative Commons



Crediti :

UAAR

Continua a leggere

Lab

Un cuore artificiale stampato in 3D

Tessuti, valvole e un cuore di neonato in grado di contrarsi: sono i risultati ottenuti con una tecnica di stampa in 3D che usa come “inchiostro” il collagene, uno dei componenti dell’impalcatura di sostegno dei tessuti biologici

Pubblicato

il

Science Photo Library/AGF

Il sogno di avere pezzi di ricambio per gli organi umani, e in particolare per il cuore, sembra ancora più vicino. Andrew Lee della Carnegie Mellon University di Pittsburgh e colleghi hanno perfezionato le più recenti tecniche di stampa in 3D e usato come materia prima il collagene, la più importante componente della matrice extracellulare (l’impalcatura di sostegno dei tessuti biologici). Con l’aggiunta di cellule in coltura, il risultato descritto sulle pagine di “Science” – è sorprendente: tessuti e strutture che riproducono con incredibile accuratezza l’anatomia e le funzioni fondamentali del cuore umano, come la contrattilità e l’apertura e la chiusura delle valvole cardiache.

Il risultato corona alcuni anni di sforzi di ricerca e sperimentazione del gruppo di Lee, che già nel 2015 aveva presentato la prima versione di questa tecnica, denominata FRESH. Tuttavia, non era ancora stato superato uno degli ostacoli fondamentali della stampa di tessuti biologici, o bioprinting, e cioè la produzione di un materiale che sia al contempo soffice e dotato di una microstruttura molto ben definita, adatta cioè a sostenere la colonizzazione delle cellule e una rete di vasi sanguigni.

Il collagene, in particolare, è il materiale più adatto a formare l’impalcatura di sostegno per gli organi artificiali, ma è difficile controllarne la microstruttura a diverse scale dimensionali mentre si stampa.

Lee e colleghi hanno risolto il problema depositando il collagene come un normale “inchiostro” in una stampante 3D, strato per strato, all’interno di un gel, controllando la solidificazione del collagene anche alle scale più piccole, fino a 10 micron. Hanno così ottenuto una matrice con una microstruttura porosa, con canali di dimensioni fino a 30 micron di diametro, adatti all’infiltrazione delle cellule e alla vascolarizzazione della matrice.

Una delle valvole cardiache prodotte con la nuova tecnica (Carnegie Mellon University College of Engineering)


Questi ultimi due processi hanno avuto successo, sia con cellule di topo sia con cellule umane in coltura, grazie all’aggiunta di due ingredienti: la fibronectina, un’altra proteina fondamentale della matrice extracellulare naturale, e il VEGF, un potente fattore di crescita dei vasi sanguigni.

Usando cardiomiociti, le cellule che costituiscono il muscolo cardiaco, derivati da cellule staminali umane, gli autori sono poi riusciti a produrre anatomie sempre più complesse – un tessuto cardiaco, un ventricolo e infine un cuore di neonato completo – con una fedeltà notevole, documentata dalle immagini di risonanza magnetica.

Ma a stupire di più sono i risultati in termini di funzionalità del prototipo: i tessuti umani così organizzati possono contrarsi in modo sincrono, e le valvole cardiache si chiudono e si aprono.

Il metodo FRESH, in questa sua seconda versione denominata FRESH 2.0, ha dunque dimostrato la sua validità per il cuore umano, ma potrebbe essere usato per produrre tessuti di sostegno per un’ampia gamma di organi. La strada per questo obiettivo deve superare ancora diversi problemi tecnici, primo fra tutti la stampa in 3D di tessuti di grandi dimensioni, con miliardi di cellule.





Licenza Creative Commons



 

Crediti :

le Scienze

Continua a leggere

Lab

Le prime immagini del centro Ames della Nasa

In occasione dei primi 50 anni di questo luogo importantissimo per la scienza spaziale, un video storico dell’Agenzia spaziale americana

Pubblicato

il

Era il 1939 quando, in qualità di secondo polo nazionale degli Stati Uniti per la ricerca in aeronautica, nasceva il centro Ames della Nasa: un conglomerato delle più grandi e sofisticate strutture per i test di volodell’epoca.

Sono trascorsi esattamente 50 anni e, in occasione di questo anniversario importante, l’Agenzia spaziale ricorda lo sviluppo di questo luogo del cuore attraverso le voci dei suoi personaggi e le immagini originali dei primi anni di attività. Un video da non perdere per gli appassionati di storia.

(Video credit: Nasa/Ames Research Center)





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Chi Siamo

Newsletter

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu [...]

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom [...]

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du [...]

Nature, Published online: 23 August 2019; doi:10.1038/d41586-019-02540-5Colleagues of Alan Cooper, w [...]

Nature, Published online: 23 August 2019; doi:10.1038/d41586-019-02564-xMansurah Abdulazeez discusse [...]

Nature, Published online: 23 August 2019; doi:10.1038/d41586-019-01805-3The Massachusetts Institute [...]

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio [...]

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a [...]

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur [...]

Sismografo Live

Seguici su Facebook

Facebook Pagelike Widget

I più letti