Contattaci

Fisica

Un lago sotto la superficie di Marte

Una scoperta tutta italiana. Acqua allo stato liquido grazie alla sua caratteristica salmastra

Pubblicato

il

Una ricerca tutta italiana ha scoperto un’enorme riserva di acqua liquida sotto la superficie marziana in corrispondenza del Polo Sud. Potrebbe trattarsi di acqua salmastra che rimane allo stato liquido, nonostante le bassissime temperature, anche per effetto della pressione del ghiaccio sovrastante, come avviene per i laghi sub-glaciali scoperti sulla Terra.

Marte

Illustrazione dello studio: la sonda Mars Express dell’Agenzia spaziale europea (in basso, al centro) ha effettuato misurazioni radar sulle coltri glaciali del Polo Sud di Marte. Dai dati è emerso il profilo stratigrafico rappresentato a sinistra nell’immagine: è evidente in azzurro la discontinuità, interpretata come la presenza di un lago sub-glaciale di acqua liquida. (Credit: ESA/INAF/Davide Coero Borga-Media INAF)

Si trova a un chilometro e mezzo di profondità, e si estende trasversalmente per 20 chilometri sotto la calotta polare meridionale di Marte. È un lago sub-glaciale rilevato dalla sonda Mars Express dell’Agenzia spaziale europea (ESA), che pone fine a un annoso dibattito. Lo annuncia su “Science” un articolo firmato da Roberto Orosei, dell’Istituto di radioastronomia dell’Istituto nazionale di astrofisica (INAF), e colleghi di un ampio gruppo di ricerca tutto italiano autore della scoperta, che ha coinvolto, oltre ad altri istituti INAF, anche le università di Roma “Sapienza”, Roma Tre, “Gabriele d’Annunzio” di Pescara, istituti del Consiglio nazionale delle ricerche e Agenzia spaziale italiana.

La presenza di acqua su Marte è oggetto di studio da decenni. Si sa che nell’atmosfera del pianeta sono presenti piccole concentrazioni di vapore acqueo, e che la superficie marziana è punteggiata da strati di ghiaccio. In corrispondenza dei poli, inoltre, si osservano spesse coltri glaciali, simili a quelle terrestri.

Proprio la similitudine cpn le condizioni osservate sulla Terra ha portato più di trent’anni fa alle prime ipotesi sulla presenza di acqua allo stato liquido sotto la superficie marziana. Il modello è quello dei laghi sub-glaciali antartici. Anche se le temperature scendono molto al di sotto di 0 °C, l’enorme pressione esercitata da strati di chilometri di ghiaccio modifica il punto di fusione dell’acqua. Ciò rende plausibile la presenza di laghi di acqua liquida alla base delle coltri glaciali, e permette anche di spiegare lo scivolamento dei ghiacciai con un basso coefficiente di attrito rispetto alla superficie su cui sono posati. E le misurazioni effettuate in Antartide hanno confermato sperimentalmente

questo modello.

 

 
  

Licenza Creative Commons

 

 

Crediti :

le Scienze

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Fisica

In Cina sono nati topi da due madri (e sono in salute)

Utilizzando cellule staminali e l’editing genico, un team di ricercatori dell’accademia delle scienze cinese è riuscito a far nascere una cucciolata di topi in buona salute da due madri

Pubblicato

il

Nuove nascite nei laboratori dell’Accademia delle scienze cinese. Una cucciolata di topi del tutto in salute. Ma la cosa sorprendente è che questi animali sono nati da genitori dello stesso sesso, e più precisamente da due madri. A raccontarlo sulle pagine di Cell Stem Cell sono stati proprio i ricercatori dell’Accademia delle scienze, in Cina, che servendosi delle cellule staminali e dell’editing genetico sono riusciti a dare alla luce topi sani da due madri. Sono nati, precisano i ricercatori, anche topi di due padri, ma sono riusciti a sopravvivere per soli due giorni.

Mentre alcuni rettili, anfibi e pesci possono riprodursi per partenogenesi, ovvero quella tipologia di riproduzione asessuata che non richiede alcun intervento da parte del maschio, è difficile per i mammiferi fare lo stesso anche con l’aiuto delle tecnologie più innovative: infatti, nei mammiferi, poiché alcuni geni materni e paterni vengono spenti durante lo sviluppo della linea germinale a seguito di un meccanismo chiamato imprinting genetico (ovvero la modulazione dell’espressione di una parte del materiale genetico), la prole che non riceve materiale genetico da una madre e un padre potrebbe subire anomalie dello sviluppo o non essere vitali.

“Eravamo interessati a capire il perché i mammiferi possono riprodursi solo sessualmente. Così abbiamo cercato di scoprire se i topi nati da due genitori di sesso femminile, o maschile, sarebbero potuti essere creati utilizzando cellule staminali embrionali aploidi con delezioni genetiche”, afferma l’autore Qi Zhou.

(foto: Leyun Wang)

 

Per capirlo, Zhou e il suo team di ricercatori hanno usato cellule staminali embrionali (Esc) aploidi, ovvero cellule che contengono metà del numero normale di cromosomi e il dna di un solo genitore. Successivamente, i ricercatori, servendosi di complesse tecniche di editing genetico, sono riusciti a iniettare queste cellule staminali contenenti il dna di un genitore femminile negli ovuli di un altro topo femmina. Al termine della sperimentazione, i ricercatori hanno osservato che da 210 embrioni sono riusciti a far nascere 29 topi sani (e che sono vissuti fino all’età adulta). “In questo studio abbiamo scoperto che le Esc aploidi erano più simili alle cellule germinali primordiali, i precursori di uova e spermatozoi, mentre l’imprinting genetico che si verifica nei gameti è stato cancellato”, spiegano i ricercatori.

Successivamente, i ricercatori sono riusciti a far nascere anche 12 topi da due padri con una procedura molto simile ma ancor più complessa. In questo caso, tuttavia, dopo aver modificato geneticamente le Esc aploidi di un topo maschio e averle iniettate insieme allo sperma dell’altro padre in una cellula uovo privata del suo materiale genetico, i cuccioli sono riusciti a sopravvivere solamente 48 ore dopo la nascita. Ora, il prossimo passo dei ricercatori sarà quello di migliorare quest’ultimo procedimento in modo tale che i cuccioli di topo nati da due padri possano riuscire a vivere fino all’età adulta. “Abbiamo anche rivelato alcune delle regioni genomiche più importanti che ostacolano lo sviluppo dei topi con genitori dello stesso sesso, informazioni che sono preziose e interessanti anche per lo studio dell’imprinting genomico e della clonazione animale, concludono i ricercatori.

In passato, precisiamo, che altri tentativi erano stati fatti per facilitare la riproduzione dello stesso sesso nei topi. Alcuni scienziati si erano concentrati sulla creazione di spermatozoi con il dna femminile e viceversa, di ovuli con il dna di un padre, mentre altri avevano utilizzato cellule staminali e l’editing genetico. Per fare qualche esempio, in uno studio del 2004 i ricercatori erano riusciti a creare i primi topi da due madri, dimostrando l’importanza dell’imprinting genetico nell’impedire la partenogenesi. Nel 2010, invece, un altro studio era riuscito a produrre topi da due padri utilizzando cellule staminali derivate dalla pelle (ma arrivare a un topo con solo dna maschile attraverso questa tecnica aveva richiesto più generazioni). Finora, tuttavia, tutti i topi nati in questi studi avevano ancora molti difetti di sviluppo. Risultati simili a questo ultimo studio, invece, erano stati raggiunti dagli stessi ricercatori dell’Accademia delle scienze cinese nel 2011, utilizzando un metodo che si basava su un intermediario femminile, tra i due padri.

 
  

Licenza Creative Commons

 

 

Crediti :

Wired

Continua a leggere

Fisica

Nobel per la fisica 2018, perché hanno vinto i laser

Ad Ashkin, Moureau e Strickland il premio Nobel per la fisica 2018 “per i loro studi innovativi nel campo della fisica dei laser”. Ecco perché sono importanti

Pubblicato

il

Ha vinto, dunque, la luce. La Royal Swedish Academy of Sciences ha assegnato il premio Nobel per la fisica 2018 ad Arthur Ashkin, dei Bell LaboratoriesGérard Mourou, della University of Michigan, e Donna Strickland, della University of Waterlooper i loro studi rivoluzionari nel campo della fisica dei laser. I tre inventori, spiegano da Stoccolma, hanno cambiato per sempre la fisica dei laser, permettendo di osservare, sotto una nuova luce (sic!), oggetti microscopici e processi rapidissimi: lo sviluppo di laser sempre più potenti e avanzati ha permesso infatti di mettere a punto strumenti di precisione che hanno spianato la strada verso aree di ricerca inesplorate e che hanno (e avranno) innumerevoli ricadute nel campo industriale e medico, oltre che nella fisica di base.Chi sono i vincitori 
(immagine: Nobel Prize)
Cominciamo dal raccontare chi sono i protagonisti di questa giornata. Arthur Ashkin, cui è andata la prima metà del premio, è uno scienziato statunitense classe 1922 che si è formato alla Columbia University e alla Cornell University. Fin dagli anni sessanta ha lavorato alla manipolazione di particelle mediante luce laser, inventando le cosiddette pinzette ottiche, uno strumento che – come suggerisce il nome – consente di acchiappare e manipolare molto precisamente, con la luce, particelle microscopiche come atomi, molecole e cellule biologiche. Ashkin, inoltre, si può considerare quasi un Nobel doppio: il suo lavoro, infatti, ha fornito le basi per gli studi sul raffreddamento e intrappolamento degli atomi condotti da Steven Chu, insignito del Nobel per la fisica nel 1997.Membro di innumerevoli società scientifiche, Ashkin ha lavorato per quarant’anni, fino al 1992, nei Bell Laboratories, per poi continuare, come ha lui stesso raccontato, a “lavorare da casa”.Gli altri due premiati, cui va ¼ del riconoscimento, sono Gérard Mourou e Donna Strickland. Mourou è uno scienziato francese che lavora per la University of Michigan, per la École Polytechnique di Palaiseau e per altri istituti di ricerca, co-inventore (insieme a Strickland, per l’appunto) della cosiddetta chirped pulse amplification (Cpa), una tecnica che permette di amplificare un impulso di radiazione elettromagnetica. Mourou ha inoltre inventato, nel 1994, una tecnica per evitare la divergenza dei fasci laser, sfruttando e combinando i fenomeni della diffrazione e della rifrazione.Strickland – la terza donna al mondo, dopo Marie Curie e Maria Goeppert-Mayer, a ricevere il Nobel per la fisica – è una ricercatrice canadese in forza alla University of Waterloo. Si è laureata in ingegneria fisica alla McMaster University e ha completato il dottorato di ricerca alla University of Rochester. Fu proprio durante il periodo di dottorato che lavorò, insieme a Mourou, alla chirped pulse amplification, il tema per cui le è stato assegnato il massimo riconoscimento. Attualmente dirige un gruppo di ricerca che si occupa di laser ultraveloci e ad alta intensità per studi nel campo dell’ottica nonlineare.Intrappolamento ottico Tutto parte da un’idea apparentemente visionaria: usare la luce per manipolare gli oggetti (inevitabile pensare al raggio traente di Star Trek). D’altronde, come sappiamo bene quando ci esponiamo al sole, la luce porta energia: e dunque, perché non provare a usare questa energia per afferrare, spingere e tirare oggetti microscopici? Detto, fatto: subito dopo l’invenzione del primo laser, negli anni sessanta, Arthur Ashkin si rese conto che le caratteristiche dei fasci laser (in particolare il fatto che si trattasse di luce coerente, cioè con differenze di fase costanti, e che i fasci stessi fossero estremamente focalizzati) li rendevano adattissimi a interagire con particelle microscopiche. Cominciò subito a giocare con lo strumento, rendendosi conto che effettivamente la pressione esercitata dai laser era sufficiente per muovere piccole sferette e che le sferette erano in qualche modo attirate verso il centro del fascio, dove l’intensità della luce era maggiore. Ashkin si rese conto che si poteva sfruttare questo fenomeno per costringere le sferette a muoversi dove si voleva semplicemente usando delle lenti che focalizzassero in un punto specifico la massima intensità del fascio.Nacquero così le prime trappole ottiche, o, se si preferisce, pinzette ottiche. Uno strumento economico, veloce e soprattutto precisissimo, che permise, negli anni a seguire, di manipolare addirittura singoli atomi (ci si riuscì nel 1986, dopo aver risolto una serie di complicazioni tecniche) e soprattutto sistemi biologici: nel corso di diversi esperimenti condotti su virus, batteri e cellule viventi Ashkin mostrò che le pinzette ottiche consentivano una manipolazione che, oltre ad essere precisa, era completamente non invasiva, e consentiva per esempio di afferrare il nucleo di una cellula senza distruggerne la membrana.Impulsi cortissimi e potentissimi Veniamo all’altro breakthrough, quello relativo all’invenzione della chirped pulse amplification. Negli anni ottanta, Donna Strickland era una dottoranda della University of Rocchester. Il suo supervisor era il professor Gérard Mourou, e i due lavoravano nel laboratorio di ottica dell’ateneo statunitense. In quel momento, la fisica dei laser sembrava essere arrivata a un binario morto: in sostanza, gli impulsi laser vengono generati con una reazione a catena in cui le particelle di luce, interferendo con sé stesse in una cavità che le amplifica, ne generano di nuove. Si riteneva fosse impossibile aumentare ancora l’intensità della luce prodotta senza distruggere il materiale della cavità.Strickland e Mourou riuscirono a superare il problema, ideando una tecnica che permetteva di allungare la durata temporale di un singolo impulso laser, amplificarne l’intensità e quindi rallentarlo di nuovo. Il trucco sta nel fatto che quando si aumenta la durata di un impulso la sua potenza di picco è molto più bassa, e quindi è possibile amplificarlo senza danneggiare l’amplificatore: una tecnica semplice ed elegante. E soprattutto efficace: nel 1985 il primo dispositivo superò la prova del laboratorio, rivoluzionando completamente la fisica dei laser e aprendo la strada a nuove applicazioni in fisica, chimica e medicina.Tante applicazioni Le pinzette di Ashkin, nel corso degli anni, sono state utilizzate in moltissimi campi: è stato possibile, per esempio, studiare diversi processi biologici tra cui il comportamento delle proteine, i cosiddetti motori molecolari, le caratteristiche del dna e la vita interna delle cellule. Uno dei campi più recenti, e promettenti, è quello della cosiddetta olografia ottica, in cui si usano contemporaneamente migliaia di pinzette, per esempio, per separare le cellule del sangue sane da quelle infette, il che potrebbe essere molto utile nella lotta alla malaria e ad altre malattie. Stesso discorso per la Cpa, che ha permesso, tra le altre cose, di realizzare la telecamera più veloce al mondo – che funziona grazie a impulsi laser della durata di pochi femtosecondi, un milionesimo di miliardesimo di secondo – e trivelle microscopiche precise e potentissime, con le quali è stato possibile bucare, letteralmente, atomi, molecole e cellule viventi. Ma, assicurano gli esperti, il meglio deve ancora venire.
Continua a leggere

Fisica

Vega C si prepara al lancio. Un video ci porta dietro le quinte della missione

Pubblicato

il

Partirà da Kourou, in Guyana francese, nella seconda metà del 2019, spinto da un motore straordinario che gli conferirà una potenza senza concorrenti tra i vettori spaziali della sua categoria. Vega-C, così si chiama, è l’ultimo arrivato tra i sistemi di lancio europei, e rappresenta un motivo di orgoglio anche per la scienza e tecnologia italiane: il cuore del suo sistema è stato infatti elaborato da un’azienda italiana con sede a Colleferro.

In questo video l’Agenzia spaziale europea ci porta dietro le quinte della missione.

 

 
  

Licenza Creative Commons

 

 

Crediti :

Wired

Continua a leggere

Newsletter

NASA TV

SPACE X

Facebook

I più letti