Contattaci

Fisica

Una nuova soluzione al paradosso di Fermi

Alcuni astronomi affermano in un nuovo studio che i movimenti stellari dovrebbero facilitare la diffusione delle civiltà in tutta la galassia, ma noi potremmo comunque trovarci soli

Pubblicato

il

Per quanto ne sappiano, siamo sempre stati soli. Siamo solo noi su questo puntino azzurro pallido, “la casa di tutti quelli che amate, di tutti quelli che conoscete, di tutti quelli di cui avete mai sentito parlare”, per citare una famosa frase di Carl Sagan. Nessuno ha chiamato, nessuno è venuto in visita. Eppure l’universo è pieno di stelle, quasi tutte hanno pianeti, e su alcuni di questi pianeti è sicuramente possibile vivere.

Dove sono tutti quanti? Il fisico italiano Enrico Fermi sarebbe stato il primo a porre questa domanda, nel 1950, e da allora gli scienziati hanno proposto una grande quantità di soluzioni al paradosso che porta il suo nome. Una delle più note è arrivata dallo stesso Sagan, che, insieme a William Newman, in un articolo del 1981 disse che dovevamo solo avere pazienza. Nessuno ci ha visitato perché sono tutti troppo lontani; perché si evolva una specie abbastanza intelligente da inventare viaggi interstellari ci vuole tempo, e altro tempo ancora perché quella specie si diffonda in così tanti mondi. Nessuno è ancora arrivato.

Altri ricercatori hanno sostenuto che la vita extraterrestre potrebbe diventare spaziale solo molto di rado (proprio come sulla Terra è stata una sola specie a diventarlo). Qualcuno sostiene che le specie con buone capacità tecnologiche, quando emergono, si autodistruggono rapidamente. Altri ancora suggeriscono che gli alieni potrebbero averci visitato in passato, o che ci stiano evitando di proposito, essendo abbastanza intelligenti da diffidare di tutti gli altri. Forse la risposta più pessimista è un fondamentale articolo  del 1975, in cui l’astrofisico Michael Hart dichiarò che l’unica ragione plausibile per cui nessuno ci ha visitato è che in realtà là fuori non c’è nessuno.

Enrico Fermi

© ImageSource / AGF

 

Ora arriva un articolo che confuta Sagan e Newman, ma anche Hart, e offre una nuova soluzione al paradosso di Fermi evitando le speculazioni sulla psicologia aliena o l’antropologia.

La ricerca, che è in corso di revisione per la pubblicazione su “The Astrophysical Journal” (qui il pre-print su arXiv.org), suggerisce che una civiltà spaziale non avrebbe bisogno di tutto il tempo ipotizzato da Sagan e Newman per saltare tra i pianeti della galassia, perché i movimenti delle stelle possono aiutare a diffondere la vita.

“Il Sole è stato vicino al centro della Via Lattea 50 volte”, ha detto Jonathan Carroll-Nellenback, astronomo dell’Università di Rochester, che ha condotto lo studio. “I soli movimenti stellari permetterebbero la diffusione della vita su scale temporali molto più brevi rispetto all’età della galassia.” Ma anche se le galassie possono essere completamente colonizzate in tempi abbastanza brevi, la nostra solitudine non è necessariamente paradossale: secondo le simulazioni di Carroll-Nellenback e colleghi, la variabilità naturale significa che a volte le galassie sono colonizzate, ma spesso non lo siano, risolvendo il dilemma di Fermi.

La questione di quanto facilmente possa essere colonizzata la galassia ha avuto un ruolo centrale nei tentativi di risolvere il paradosso di Fermi. Hart e altri hanno calcolato che una singola specie spaziale potrebbe popolare la galassia in pochi milioni di anni, forse anche in soli 650.000 anni. Data la relativa facilità con cui dovrebbero diffondersi, la loro assenza indica che non devono esistere, secondo Hart.

Sagan e Newman sostenevano che ci sarebbe voluto più tempo, in parte perché le civiltà longeve hanno la tendenza a crescere più lentamente. Società con ritmi di crescita più rapidi e violenti potrebbero estinguersi prima di aver potuto toccare tutte le stelle. E’ quindi possibile che siano esistite molte società con una crescita rapida e una vita breve, che poi sono scomparse, o qualche società con un’espansione lenta e una lunga vita, che non sono ancora arrivate, come ha sintetizzato la tesi di Sagan e Newman Jason Wright della Pennsylvania State University, coautore del nuovo studio.

Ma Wright non è d’accordo con nessuna delle due soluzioni. “Così si confonde l’espansione della specie nel suo complesso con la sostenibilità dei singoli insediamenti”, ha detto. “Anche se fosse vero per una specie, l’idea che se si stanno espandendo sono necessariamente di breve durata non è una ferrea legge della xenosociologia”. Dopo tutto, ha osservato, la vita sulla Terra è robusta, “e si espande molto velocemente”.

Nel loro nuovo articolo, Carroll-Nellenback, Wright e i loro collaboratori Adam Frank dell’Università di Rochester e Caleb Scharf della Columbia University, hanno cercato di esaminare il paradosso senza avanzare ipotesi non verificabili. Hanno modellato la diffusione di un “fronte d’insediamento” attraverso la galassia, e hanno scoperto che la sua velocità sarebbe fortemente influenzata dai movimenti delle stelle, che nei lavori precedenti – compresi quelli di Sagan e Newman – erano trattate come oggetti statici.

Il fronte di insediamento poteva percorrere l’intera galassia sulla base dei soli movimenti delle stelle, indipendentemente dalla potenza dei sistemi di propulsione. “C’è molto tempo per una crescita esponenziale che porti sostanzialmente all’insediamento di ogni sistema”, ha detto Carroll-Nellenback.

Allen Telescope Array

L’Allen Telescope Array è uno dei più grandi rediotelescopi usato anche per la ricerca di forme di vita intelligente extraterrestre. (Cortesia Seth Shostak/SETI Institute)

Ma il fatto che non ci siano visitatori interstellari – quello che Hart ha chiamato “Fatto A” – non significa che non esistano, dicono gli autori. Anche se alcune civiltà potrebbero espandersi e diventare interstellari, non tutte durerebbero per sempre. Inoltre, non tutte le stelle sono una meta interessante, e non tutti i pianeti sono abitabili. C’è anche quello che Frank chiama “l’effetto Aurora”, dall’ominimo romanzo di Kim Stanley Robinson, in cui i coloni arrivano su un pianeta abitabile su cui non possono comunque sopravvivere.

Quando Carroll-Nellenback e i suoi coautori hanno incluso nel loro modello questi ostacoli all’insediamento ed effettuato molte simulazioni con diverse densità stellari, semi di civiltà, velocità dei veicoli spaziali e altre variabili, hanno trovato un ampio spazio intermedio tra una galassia silenziosa e vuota e una brulicante di vita. E’ possibile che la Via Lattea sia parzialmente colonizzata o che lo sia saltuariamente; forse gli esploratori ci hanno visitato in passato, ma non ce ne ricordiamo, e si sono estinti. Il sistema solare potrebbe anche essere in mezzo ad altri sistemi colonizzati; è stato solo trascurato dai visitatori per milioni di anni.

Anders Sandberg, futurologo del Future of Humanity Institute all’Università di Oxford, che ha studiato il paradosso di Fermi, ha detto di pensare che le navicelle spaziali diffonderebbero le civiltà più efficacemente dei moti stellari. “Ma il rimescolamento delle stelle potrebbe essere importante”, ha scritto in un’e-mail, “poiché è probabile che diffonda sia la vita, attraverso la panspermia locale [la diffusione dei precursori chimici della vita], sia l’intelligenza, se è davvero così difficile percorrere lunghe distanze”.

Frank pensa che il nuovo articolo dia speranza a chi, come il SETI, cerca forme di vita intelligente. Lui e Wright dicono che ora dobbiamo cercare più intensamente eventuali segnali alieni, cosa che sarà possibile nei prossimi decenni quando telescopi più sofisticati punteranno sulla panoplia degli esopianeti e cominceranno a intravederne le atmosfere.

“Stiamo entrando in un’epoca in cui avremo dati reali rilevanti per la vita su altri pianeti”, ha detto Frank. “Non poteva esserci un momento più rilevante di questo.”

Seth Shostak, un astronomo del SETI Institute che ha studiato il paradosso di Fermi per decenni, pensa che a spiegarlo possa essere da qualcosa di più complesso della distanza e del tempo, come la percezione.

Forse non siamo soli e non lo siamo stati. “I coleotteri nel mio giardino non si accorgono di essere circondati da esseri intelligenti, cioè i miei vicini e me – dice Shostak – ma siamo comunque qui.”


(L’originale di questo articolo è stato pubblicato il 7 marzo 2019 da QuantaMagazine.org, una pubblicazione editoriale indipendente online promossa dalla Fondazione Simons per migliorare la comprensione pubblica della scienza.





Licenza Creative Commons



Crediti :

le Scienze

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
Clicca per commentare

Leave a Reply

Per commentare puoi anche connetterti tramite:



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Fisica

Abbiamo scoperto la prima molecola dell’Universo

È l’idruro di elio, scovato nella nebulosa Ngc 7027. A lunga cercata, si crede sia stata la prima molecola a formarsi nell’Universo primordiale. Ecco quella che fu l’”alba della chimica”, scrivono i ricercatori su Nature

Pubblicato

il

Sappiamo qualcosa in più su come tutto ha avuto inizio. O quanto meno abbiamo le prove per credere che la storia che fin qui abbiamo immaginato è quella giusta. La storia è quella dell’origine dell’Universo e cerca di spiegare in che modo si è formata tutta la materia di cui siamo fatti e da cui siamo circondati. E oggi, la scoperta nello Spazio della prima molecola dell’Universo, dimostra come tutto abbia avuto inizio. La scoperta, raccontata sulle pagine di Nature, è quella dello ione idruro di elio.

Qualche doveroso passo indietro. Quando tutto ebbe inizio, subito dopo il Big Bang, più di 13 miliardi di anni fa, non esisteva la varietà di materia, come stelle, pianeti e galassie, che possiamo osservare oggi. La maggior parte degli atomi presenti erano atomi di idrogeno ed elio. Furono questi a formare le prime stelle, e furono poi le stelle, attraverso processi come quelli di nucleosintesi, a formare gli elementi più pesanti.

Nella storia chimica del nostro Universo, la combinazione dei primi atomi a formare le prime molecole, contribuì a raffreddarlo e stabilizzarlo. A dargli formasintetizzano dalla Nasa. In questo processo un ruolo fondamentale lo ebbe secondo gli scienziati l’idruro di elio, considerata la molecola primordiale, una sorta di primo mattone nella complessa storia della formazione della materia. Gli atomi di idrogeno, infatti, combinandosi con l’idruro di elio, avrebbero dato vita all’idrogeno molecolare, la molecola dietro la formazione delle prime stelle.

Finora però dimostrare che effettivamente questa molecola, l’idruro di elio, potesse formarsi e trovarsi nello Spazio anche oggi non era chiaro. Anzi, al di là di alcune prove in laboratorio ottenute agli inizi del secolo scorso, in cui gli scienziati avevano forzato l’elio, un elemento nobile e poco reattivo, a combinarsi con uno ione idrogeno, mancavano le evidenze in natura. Le osservazioni astronomiche però avevano indicato la nebulosa planetaria Ngc 7027 come un sito adatto, per condizioni ambientali, in cui potesse formarsi l’idruro di elio. Condizioni simili a quelle dell’Universo primordiale. E lì i ricercatori hanno cercato a lungo prove di questa elusiva presenza.

Prove che sono arrivate oggi grazie a Sofia (Stratospheric Observatory for Infrared Astronomy), un Boeing 747SP modificato, che funziona come una sorta di laboratorio volante, a circa 13 km di altitudine. Si tratta di un progetto congiunto della Nasa e dell’Agenzia spaziale tedesca, dotato di un telescopio spaziale. Recentemente a bordo di questo laboratorio volante è stato aggiunto lo spettrometro Great (German Receiver at Terahertz Frequencies), uno strumento che funziona come un ricevitore radio, specifico per l’idruro di elio: scandaglia il cielo alla ricerca di frequenze specifiche della molecola cercata (nella banda degli infrarossi nello specifico). E alla fine Great ha fatto centro, trovando proprio in NGC 7027 quanto i ricercatori andavano cercando da tempo: le prove della presenza di idruro di elio nello Spazio. Là, a 3000 anni luce di distanza, nelle zone dela costellazione del Cigno.

“È stato così entusiasmante essere lì, vedere l’idruro di elio per la prima volta nei dati che abbiamo collezionato”, ha commentato Rolf Guesten del Max Planck Institute for Radio Astronomy di Bonn, a capo dello studio, “Il lieto fine di una lunga ricerca che elimina i dubbi che avevamo sulla chimica alla base dell’Universo primordiale”.





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Fisica

La prima “foto” di un buco nero: come è stata scattata l’immagine di M87?

Gli scienziati spiegano come è stata ottenuta l’immagine del buco nero al centro della galassia Messier 87. Una scoperta che conferma le teorie di Einstein. Come si è costruito un telescopio “virtuale” grande quanto la Terra

Pubblicato

il

Un’immagine unica, che lascia scienziati e appassionati del cielo, ma anche il pubblico più generale, senza fiato. Stiamo parlando della prima foto di un buco nero, in assoluto la prima prova visiva diretta di un corpo celeste di questo genere, ottenuta dall’Event horizon telescope consortium (Ehtc). Il corpo osservato è il buco nero supermassiccio M87, al centro della galassia Messier 87. Il buco nero si trova a 55 milioni di anni luce da noi e ha una massa 7 miliardi di volte più alta di quella del sole.

buco nero M87

Le immagini del buco nero M87 nei vari giorni della (foto: Eht collaboration, Paper IV, 2019)

L’immagine lascia senza fiato anche perché oggetti invisibili dalle caratteristiche estreme, come i buchi neri, da cui nulla, nemmeno la radiazione, può uscire, non sono mai stati osservati e ripresi.

Come si cattura l’immagine di un buco nero?

Ma come è stato possibile arrivare a un risultato come questo, unico nella storia della scienza? Intanto bisogna fare una premessa. Ciò che è stato immortalato è l’ombra del buco nero, o meglio l‘orizzonte degli eventi, come viene definito in fisica. Ossia quella regione dello spazio tempo che rappresenta il limite, come uno spartiacque, dentro cui materia e radiazione sono ineluttabilmente inghiottite e nulla può uscire, neanche la luce.

Finora, l’ombra di un buco nero è ciò che si avvicina di più all’immagine del buco nero stesso. E non si era mai ottenuta un’immagine di questo tipo, anche se esistevano già diverse prove dell’esistenza di tali oggetti celesti.

Conferma di Einstein

“La prima ipotesi della presenza di questi oggetti”, spiega Ciriaco Goddi, segretario del consiglio scientifico del consorzio Eht e responsabile scientifico del progetto BlackHoleCam, durante la conferenza a Roma, presso la sede dell’Istituto nazionale di astrofisica, “è contenuta all’interno della teoria relatività generale di Einstein del 1916. Tuttavia, soltanto a partire dagli anni ’60 del secolo scorso si è risvegliato l’interesse verso i buchi neri”. E oggi, prosegue l’esperto, “l’ombra visualizzata del buco nero M87 è in perfetto accordo con la teoria di Einstein”. Insomma, ancora una volta Einstein non sbaglia mai.

L’immagine sembra quella di una ciambella spaziale, dai colori accesi e dai contorni sfumati. “È la foto del secolo”, aggiunge Goddi. “Ciò che si osserva è il plasma incandescente che circonda il buco nero, che grazie alle alte frequenze a cui opera la rete Eht, diventa trasparente ed emette radiazione e rende possibile vedere i confini dell’orizzonte degli eventi”, dice Goddi. Anche se, aggiunge, nella ciambella c’è un’asimmetria, dovuta al fatto che il plasma attraversa l’orizzonte degli eventi e viene inghiottito dal buco nero.

Il telescopio

Oltre a essere attraente, l’immagine è stata ottenuta con la risoluzione angolare più elevata mai raggiunta, prosegue lo scienziato. “Se avessimo dovuto utilizzare un unico telescopio – chiarisce l’esperto – questo avrebbe dovuto essere delle dimensioni di 5 chilometri di diametro, una grandezza impossibile da ottenere per qualsiasi strumento di questo genere”. Così i ricercatori hanno pensato di ricreare un telescopio enorme attraverso una particolare tecnica, chiamata Very-long-base interferometry (Vlbi). Questa tecnica sfrutta la rotazione terrestre e combina i dati ottenuti da tutti i telescopi della rete Eht.

(foto: Eht ESo/L. Calçada. La rete dei telescopi Eht)

In pratica viene misurata la distanza spaziale fra tutti i telescopi della rete mettendo insieme i dati della differenza di tempo del segnale in ingresso in ciascuno di questi. Attraverso questo processo, è un po’ come se si costruisse un unico grande telescopio grande come la Terra, da cui osservare il centro delle galassie.

Infine, perché scegliere un buco nero supermassiccio (come M87 oppure Sagittarius A*, al centro della Via Lattea) e non un buco nero qualsiasi?“Esistono moltissimi buchi neri”, aggiunge Goddi, “che tuttavia sono di piccole dimensioni, cioè pari a poche masse solari. Per questa ragione sono difficili da studiare”.

Mentre in questo caso, entrambi i candidati erano supermassicci, con una massa di circa 4 milioni di volte quella del Sole, nel caso di Sagittarius A*, e di addirittura 7 miliardi quella del sole per M87. Un’operazione molto complessa, che ha richiesto una collaborazione a livello globale, nonché una presa e un’analisi dati eccezionale: qualcosa come 4 milioni di miliardi di byte.

Com’è affacciarsi su un buco nero? Un’animazione ci porta ai confini di M87





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Fisica

Vivere vicino a un buco nero supermassiccio

In linea teorica, intorno ai buchi neri – compresi quelli supermassicci che si trovano al centro della maggior parte delle galassie – potrebbero esistere dei pianeti, e persino dei pianeti che ospitano forme di vita. Sarebbe pericoloso, ovviamente, ma potrebbe anche essere divertente!

Pubblicato

il

Cortesia NASA/JPL-Caltech

Fin dagli anni novanta sappiamo che ci sono pianeti intorno alle pulsar, oggetti straordinariamente densi nati da violente esplosioni delle stelle. È quindi ragionevole supporre che i pianeti possano esistere anche intorno ai buchi neri: i quali, e questo forse sorprenderà molte persone, in effetti hanno un impatto sull’ambiente molto più debole rispetto alle pulsar.

È anche possibile che su alcuni di questi pianeti si possa formare la vita, dato che sulla Terra gli organismi si sono adattati a condizioni estreme, tra cui calore estremo, freddo gelido, ambienti acidi, altamente salati e persino radioattivi.

Pianeti abitati potrebbero esistere vicino ai buchi neri supermassicci che si trovano al centro della maggior parte delle galassie. La nostra galassia, la Via Lattea, ospita un buco nero la cui massa è pari a quella di quattro milioni di stelle. Conosciuto come Sgr A* (Sgr sta per Sagittarius), la sua orbita circolare stabile più interna (ISCO, Innermost stable circular orbit) ha approssimativamente le dimensioni dell’orbita di Mercurio intorno al nostro Sole.

Allora, come sarebbe la vita su un pianeta del genere?

Prima di affrontare i molti rischi per la salute della vita in prossimità di un buco nero, dovremmo considerare i benefici. Se le civiltà si formano o migrano nelle vicinanze dei buchi neri, cosa potrebbero fare per divertimento e per profitto? Mi vengono in mente le seguenti 10 attività principali:

– Usare il buco nero come fonte di energia pulita scaricando rifiuti attraverso il disco di accumulazione della materia che gli gira intorno. Nel caso di un buco nero che ruoti molto velocemente, sarebbe possibile convertire in radiazione fino al 42 per cento della massa a riposo di questo “cestino della spazzatura”, purché sia situato in corrispondenza dell’orbita circolare stabile più interna.

– Accoppiare qualche dispositivo ingegnerizzato allo spin del buco nero, come un gigantesco volano da cui poter ricavare l’energia di spin.

– Navigare con vele a radiazione su jet relativistici a velocità che si avvicinano a quelle della luce.

– Prolungare la giovinezza visitando saloni di bellezza prossimi all’orizzonte del buco nero, dove il tempo scorre più lentamente a causa del redshift gravitazionale.

– Vedere lo spettacolo dell’intero universo come immagine riflessa e distorta delle lenti gravitazionali intorno al buco nero.

– Installare un parco giochi presso la cosiddetta “sfera fotonica”, dove ci si può divertire con effetti relativistici, come vedersi da dietro guardando dritto in avanti mentre la luce gira intorno al buco nero.

– Sfruttare nuove opportunità per i viaggi spaziali. Per esempio, quando tra miliardi di anni la Via Lattea e la sua galassia sorella Andromeda si fonderanno, i due buchi neri al loro centro si accoppieranno in uno stretto sistema binario, che dovrebbe agire come una fionda gravitazionale ed espellere stelle o pianeti alla velocità della luce. Le agenzie di viaggio possono offrire biglietti per corse eccezionali su pianeti espulsi che attraversano l’intero universo.

– Usare il buco nero come la prigione definitiva, condannando i criminali al confino e alla morte nella singolarità. La massa del buco nero determinerebbe il tempo che rimane da vivere ai prigionieri. Minore è il loro crimine, più massiccio dovrebbe essere il buco nero, permettendo di allungare la vita residua dei criminali una volta attraversate le “pareti della prigione” costituite dall’orizzonte del buco nero.

– Utilizzare per le comunicazioni le onde gravitazionali provenienti da piccoli oggetti in orbita intorno al buco nero. Quei segnali non possono essere bloccati da alcuna forma nota di materia.

– Testare aspetti fondamentali della gravità quantistica attraverso viaggi organizzati di scienziati sperimentali esperti in fisica delle stringhe.

Il pericolo principale per gli astronauti che tentano di eseguire queste attività deriva dalle maree gravitazionali. Come ha notato Albert Einstein nel suo famoso esperimento mentale, a chi si trova all’interno di un ascensore o di una navicella spaziale in caduta libera sembra di non avere alcuna gravità. Ma qualsiasi differenza nell’accelerazione gravitazionale tra la testa e le dita dei piedi, che misura la curvatura dello spazio-tempo, potrebbe strappare il corpo.

Quelle maree imporrebbero una condanna a morte nelle vicinanze di un buco nero di massa stellare, ma non rappresentano una minaccia per il corpo umano nell’ambiente molto più esteso intorno a un buco nero supermassiccio, come Sgr A*.

Un sistema binario dibuchi neri. (Cortesia NASA)

 

Di conseguenza, la densità della materia necessaria per fare un buco nero si scala linearmente con la sua curvatura spaziotemporale. I buchi neri di bassa massa si formano attraverso il collasso del nucleo di una stella massiccia a densità di gran lunga superiori a quelle di un nucleo atomico. Ma per fare un buco nero supermassiccio, che è molto più rarefatto, è sufficiente riempire l’orbita di Giove con acqua liquida.

Per quanto semplice possa sembrare questo progetto di ingegneria, non è affatto pratico, poiché richiede circa 100 milioni di masse solari di acqua. E il calore generato durante il versamento dell’acqua brucerebbe tutti gli impianti associati.

Infatti, il calore liberato dai buchi neri supermassicci costituisce una minaccia esistenziale per le civiltà che risiedono vicino ai centri delle galassie. In un articolo con John Forbes, abbiamo dimostrato che una frazione significativa di tutti i pianeti dell’universo è vulnerabile alla perdita delle loro atmosfere o alla bollitura dei loro oceani per il fatto di essere stati vicini a un nucleo galattico attivo durante la loro vita.

Per la prima volta nella storia dell’umanità, ora abbiamo la tecnologia per raffigurare le sagome dei buchi neri supermassicci al centro della Via Lattea e della galassia ellittica gigante M87 sullo sfondo del gas incandescente alle loro spalle. Le prime immagini di questo tipo dovrebbero essere pubblicate entro la fine dell’anno.

In una conferenza al convegno del 2018 della Black Hole Initiative di Harvard, un centro interdisciplinare dedicato allo studio dei buchi neri, ho suggerito che i futuri progressi nella propulsione spaziale potrebbero permetterci di organizzare una gita verso un buco nero vicino. Questa sarà una grande opportunità per dedicarsi ad alcune delle suddette attività, e forse anche per scambiare informazioni sulla gravità quantistica con un turista di altre civiltà che potrebbe essersi già accampato là fuori.


(L’originale di questo articolo è stato pubblicato su “Scientific American” l’11 marzo 2019





Licenza Creative Commons



Crediti :

le Scienze

Continua a leggere

Chi Siamo

Dicono di noi

Todos tenemos algo de Satanás y de Dios dentro del corazón.Hay que abrazar la sombra y la luz.Es una manera de asumir quienes somos en esta mundana sociedad, que llamamos "civilización". No todo en la vida es negro, ni todo en la vida es blanco.Algunas veces preferimos una mentira disfrazada de verdad, a una dura verdad, que parece una mentira.

thumb Juan Serrano
3/31/2019

Newsletter

Sismografo Live

NASA TV

SPACE X

Facebook

Ultimi commenti

I più letti