Contattaci

Fisica

Una struttura sconosciuta avvolge i cromosomi

Pubblicato

il

Il 47% di ogni cromosoma umano è occupato da una struttura in gran parte sconosciuta, una sorta di guaina che sembra avere un ruolo nell’impedire errori durante la divisione cellulare

Sin dalla loro scoperta avvenuta nel 1882, i cromosomi, custodi della nostra informazione genetica, sono stati protagonisti di numerosi studi che ne hanno svelato forma e funzioni. Nonostante ciò, il loro aspetto sembra ancora nascondere più di un mistero. Lo conferma un nuovo studio, pubblicato su Molecular Cell, che ha individuato una struttura che finora era rimasta in gran parte sconosciuta, che avvolge i cromosomi come una guaina, e che potrebbe addirittura costituire circa il 47% della loro massa totale.

Ma come è possibile che per più di un secolo sia sfuggito ai ricercatori di tutto il mondo un dettaglio così importante? La maggior parte di quello che è noto sulla struttura dei cromosomi proviene dalla loro osservazione durante la divisione cellulare, l’unico momento in cui diventano visibili al microscopio perché si compattano in una struttura superavvolta. È chiaro, quindi, che potendoli osservare solamente in queste condizioni i ricercatori stavano lavorando su un quadro incompleto che non rappresentava tutti i dettagli di come i cromosomi appaiono veramente.

Per migliorare la capacità di osservare la struttura interna dei cromosomi, i ricercatori dell’Università di Edimburgo hanno messo a punto una nuova tecnica, chiamata 3d-Clem, in grado di combinare le potenzialità della microscopia ottica ed elettronica attraverso dei software di modellingcomputazionale: il risultato è stata la prima immagine tridimensionale ad alta risoluzione di tutti e 46 i cromosomi umani. Dopo aver ottenuto lunghezza, larghezza, area di superficie e volume dei cromosomi, e densità di impacchettamento del dna, i ricercatori hanno appunto scoperto una nuova struttura, una sorta di guaina, che sembra rivoluzionare le nostre conoscenze di base sull’aspetto reale dei cromosomi.

“Definire per la prima volta la struttura di tutti e 46 i cromosomi umani ci ha spinto a riconsiderare l’idea che li vedeva composti quasi esclusivamente di cromatina, un’assunzione che è rimasta invariata per quasi 100 anni, racconta Daniel Booth, uno degli autori dello studio. Nella loro analisi infatti, Booth e colleghi hanno scoperto che la cromatina, il complesso di dna e proteine all’interno dei cromosomi, ammonta tra il 53 e il 70% del contenuto totale dei cromosomi. Il rimanente 30/47% sembra invece essere costituito da questa struttura che finora rientrava sotto il nome di periferia cromosomica, qualcosa che aveva attirato l’attenzione dei ricercatori in passato ma di cui ancora si ignorava la reale estensione.

Ancora non è chiaro quale sia la funzione di questa struttura ma i ricercatori sospettano si tratti di una guaina che tiene i cromosomi separati durante la divisione cellulare, in modo da prevenire errori che possono portare, per esempio, a malformazioni del nascituro o a generare vari tipi di cancro. Oltre a questo non si conosce molto altro, non si sa se questa struttura misteriosa si comporti come una guaina liquida o solida, e non è chiaro come riesca a influenzare i cambiamenti strutturali della cromatina durante la divisione cellulare.

“Visto che ora sappiamo che il nostro patrimonio genetico è avvolto da questo spesso strato di materiale (non ancora identificato) dobbiamo riformulare una teoria valida, e ripensare al modo in cui i cromosomi sono costruiti e a come si comportano durante la divisione cellulare” , spiega Bill Earnshaw, uno dei componenti del team di ricerca.





Licenza Creative Commons



Crediti :

Wired

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Fisica

La galassia del Triangolo, vista da vicino

Il telescopio Hubble ci porta all’interno di una delle galassie più vicine alla Via lattea

Pubblicato

il

È una delle attrazioni più interessanti del cielo di novembre, e se  vi trovate in un luogo sufficientemente al riparo dall’inquinamento luminoso, seguendo le nostre istruzioni non avrete nemmeno troppi problemi a scovarla con un semplice binocolo (o persino a occhio nudo). La galassia del Triangolo – una delle più vicine a noi con i suoi soli tre milioni di anni luce di distanza – comparirà come una macchia di forma ovale, bluastra, in direzione delle costellazioni dell’Ariete e dei Pesci, a sud nella volta celeste. Grazie al telescopio Hubble, eccone però una versione super ravvicinata: un vero e proprio tuffo in direzione della sua grossa spirale di stelle.

Vista così, vi darà l’opportunità di scovare anche le sue irregolarità: polveri e gas non sono infatti distribuiti in maniera omogenea lungo i suoi bracci, e danno origine a dei grumi o, in gergo spaziale, ai cosiddetti fiocchi. Inoltre, lo zoom ci conduce con lo sguardo all’interno di una delle zone a maggiore intensità di formazione stellare: la nebulosa Ngc 604, avvolta dal bagliore di gas incandescente.

[Credit video: Nasa, Esa, and G. Bacon (STScI)]





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Fisica

Il misterioso aereo spaziale della Us Air Force ha battuto un altro record: è stato 780 giorni in orbita

Lo spaceplane X-37B è atterrato domenica mattina dopo oltre due anni di missione. Un successo, dicono dalla Us Air Force, ma lo scopo del volo da record continua a essere misterioso

Pubblicato

il

(foto: U.S. Air Force)

Un altro volo da record per il misterioso spaceplane X-37B, che domenica è atterrato, dopo ben 780 giorni in orbita, al Kennedy Space Center della Nasa, alle 3:51 locali. Decollato per la sua quinta missione il 7 settembre 2017, l’aereo spaziale – un veicolo di test riutilizzabile delll’aeronautica statunitense, ovviamente senza pilota – ha così battuto il suo precedente primato di 718 giorni. Un successo che riafferma la supremazia spaziale degli Stati Uniti, dicono dalla Us Air Force. Ma gli obiettivi dichiarati delle missioni rimangono un po’ vaghi.

Nonostante le cinque missioni alle spalle non si sa molto di X-37B, se non che assomiglia a quello che fu lo Space Shuttle (la navetta spaziale americana andata ormai in pensione) ma in dimensioni ridotte – soli 8,8 metri che non consentono di ospitare un equipaggio.

Ufficialmente la Air Force ha sempre dichiarato si tratti di un veicolo di test per sperimentare le tecnologie per le lunghe permanenze in orbita, a bordo del quale si svolgono esperimenti con medesima finalità e che consente anche il posizionamento di nuovi satelliti. Le scarne informazioni fornite hanno però contribuito ad alimentare un certo alone di mistero intorno alle cinque missioni dello spaceplane automatico, tant’è che c’è stato chi ha sospettato si tratti di un’arma per sabotare satelliti nemici.

Rimanendo sulla versione ufficiale, il segretario dell’Aeronautica militare Barbara Barrett ha commentato“L’X-37B continua a dimostrare l’importanza di un aereo spaziale riutilizzabile. Ogni missione successiva fa avanzare le capacità spaziali della nostra nazione”.

Finora lo spaceplane X-37B ha accumulato un totale di 2.865 giorni di volo. L’aereo spaziale riutilizzabile della Us Air Force si conferma una componente chiave per la futura esplorazione americana dello Spazio.

“Con il successo di questo atterraggio, l’X-37B ha completato il suo volo più lungo fino a oggi e ha completato tutti gli obiettivi della missione”, ha aggiunto Randy Walden, direttore dell’Air Force Rapid Capabilities Office. “Questa missione ha ospitato con successo esperimenti dell’Air Force Research Laboratory, tra gli altri, oltre a fornire un passaggio per piccoli satelliti“.





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Fisica

Cos’è davvero un computer quantistico e perché potrebbe cambiare il mondo

Trapelato un articolo scientifico in cui Google afferma di essere riuscita a conseguire la “supremazia quantistica” con un processore superconduttivo. È l’inizio di una rivoluzione attesa da tempo

Pubblicato

il

(Immagine: Getty Images)

Notizia bomba nel campo dell’informatica quantistica. Trapelata, poi ritirata, ma mai smentita né confermata ufficialmente. La scorsa settimana è apparso su sito della Nasa un paper dal titolo Quantum supremacy using a programmable superconducting processor, ossia Supremazia quantistica usando un processore superconduttivo programmabile. L’articolo è rimasto online per poche ore (fortunatamente qualche anima pia ha provveduto a salvarlo) ma tanto è bastato a generare una valanga di commenti, controversie, polemiche, supposizioni e speranze tra la comunità degli addetti ai lavori. Questo il succo: Sycamore, il computer quantistico di Google, sarebbe riuscito a conseguire la cosiddetta supremazia quantistica, ossia a svolgere nel giro di pochi minuti, e per la prima volta al mondo, una serie di operazioni che i computer tradizionali impiegherebbero decine di migliaia di anni a svolgere. Abbiamo cercato di capire, con l’aiuto di un esperto, quanto c’è da fidarsi, perché si tratta di una notizia così importante e cosa potrebbe cambiare nel futuro qualora fosse confermata.

Recap: cos’è e come funziona un computer quantistico

Cominciamo dalle basi, anche per sgomberare il campo da ambiguità e incomprensioni. Un computer quantistico sfrutta alcune tra le proprietà più bizzarre e controintuitive della meccanica quantistica per ottenere una potenza di calcolo di gran lunga superiore rispetto a quella di un computer (e di un supercomputer) classico. Come tutti sanno, l’unità minima di informazione di un processore convenzionale è il bit, un’entità binaria che può assumere i valori zero e uno a seconda del passaggio o meno di corrente. Dal canto loro, i processori quantistici usano i qubit, in genere particelle subatomiche come fotoni elettroni, che invece possono immagazzinare molte più informazioni: “I processori tradizionali”, racconta Tommaso Calarco, direttore del Jara-Institute Quantum Information e presiedente dello European Quantum Flagship Network“ammettono solo due stati, lo zero e l’uno, legati al passaggio o al non-passaggio di corrente, cioè di un flusso di elettroni. Nei processori quantistici, invece, ogni singolo elettrone trasporta un’informazione, il che amplifica enormemente la potenza di calcolo”.

Le leggi della meccanica quantistica, infatti, postulano (tra le altre cose) che ogni particella sia soggetta al cosiddetto principio di sovrapposizione, ossia – per dirla rozzamente – si possa trovare contemporaneamente, con probabilità diverse, in più stati differenti. “Il principio di sovrapposizione consente di superare il dualismo acceso/spento e di veicolare molta più informazione: una particella quantistica può rappresentare contemporaneamente più stati”. Il qubit, insomma, permette di parallelizzare i calcoli, cioè di svolgere molte, moltissime operazioni contemporaneamente.

Non sostituirà i computer tradizionali, per ora

Attenzione: quanto detto finora, probabilmente, non vuol dire che nel prossimo futuro i processori classici andranno definitivamente in pensione. Per la maggior parte delle operazioni convenzionali saranno ancora l’opzione più efficiente ed economica: usare un computer quantistico per il rendering di un video o per abbattere i mostri di un videogioco sarebbe come sparare a una mosca con un cannone. Diverso è il caso di settori come la scienza dei materiali, o l’industria farmaceutica, o la fisica delle particelle: in questi scenari un processore quantistico potrebbe davvero cambiare completamente – e per sempre – le regole del gioco, rendendo possibili avanzamenti tecnologici di vastissima portata e difficili da prevedere a priori.

A che punto siamo?

Questi mesi rappresentano una fase cruciale nella storia dello sviluppo dei computer quantistici. Appena pochi giorni prima del leak di Google, Ibm ha annunciato che a ottobre prossimo consentirà a ingegneri, fisici e informatici di accedere da remoto a un computer quantistico a 53 qubit, il più potente mai costruito dall’azienda e il maggiore mai messo a disposizione per uso esterno. La notizia è arrivata a coronamento di sforzi che vanno avanti da anni: nel 2017, come vi avevamo raccontato, gli scienziati di Ibm erano riusciti a simulare con successo un computer quantistico a 56 qubit all’interno di un processore tradizionale con 4.5 terabyte di memoria.

Dal canto suo, invece, Google ha a disposizione Sycamore, un computer a 54 qubit (uno dei quali sembra non funzionare come dovrebbe, e pertanto ne vengono utilizzati 53), e un altro sistema a 72 qubit, che al momento si è rivelato però troppo difficile da controllare. Tutto perché i sistemi quantistici sono estremamente delicati, e particolarmente suscettibili anche a impercettibili interferenze esterne (termiche ed elettromagnetiche, per esempio): “Per dare un’idea della difficoltà enorme di gestire e controllare i computer quantistici”, ci spiega ancora Calarco, “si può pensare ai qubit come ai componenti di un’orchestra chiamata a suonare la nona sinfonia di Beethoven. Però ciascun musicista deve riuscire a farlo con guantoni da boxe alle mani e casco sulla testa. E in una stanza tenuta a novanta gradi di temperatura. È un compito veramente molto, molto difficile”.

Supremazia quantistica vs vantaggio quantistico

Veniamo a Google. Cosa vuol dire supremazia quantistica“Di per sé, si tratta di un concetto molto semplice”, dice ancora Calarco. “Vuol dire riuscire a risolvere, con un computer quantistico, un calcolo che un computer tradizionale non riuscirebbe a risolvere, quantomeno in un tempo ragionevole”. Nella fattispecie, Sycamore è riuscita a dimostrare che una sequenza di numeri casuali è realmente casuale (un problema matematicamente molto complesso) in circa tre minuti e venti secondi; Summit, il supercomputer (tradizionale) più potente al mondo, ci impiegherebbe circa 10mila anni.

“Il problema risolto da Sycamore, in sé, è del tutto inutile, o meglio ha interesse puramente accademico. La sua importanza è legata al fatto che riuscire a risolverlo dimostra una volta per tutte che abbiamo conseguito la supremazia quantistica. È il coronamento di quello che pensavamo fosse solo un sogno, e che ora sappiamo in realtà essere fattibile”. Il prossimo passo, spiega ancora Calarco, sarà passare dalla supremazia quantistica al vantaggio quantistico, cioè all’effettiva progettazione di algoritmi da far svolgere ai computer quantistici del futuro. È come se in questo momento abbiamo mostrato che è possibile costruire una macchina velocissima, ma ci mancano ancora strade, distributori di benzina, infrastrutture. E soprattutto partenze e destinazioni. “È ancora decisamente troppo presto per immaginare tutte le applicazioni. Potrebbero essere davvero sterminate, e strabilianti. I prossimi passi sono anzitutto migliorare ulteriormente l’hardware, arrivando a controllare con precisione sistemi a 100 o più qubit, e poi lavorare allo sviluppo di algoritmi che permettano di arrivare al vantaggio quantistico”. Il futuro ci attende.





Licenza Creative Commons



Crediti :

Wired

Continua a leggere

Chi Siamo

Newsletter

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu [...]

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom [...]

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du [...]

Nature, Published online: 14 November 2019; doi:10.1038/s41586-019-1761-7Author Correction: Targetin [...]

Nature, Published online: 13 November 2019; doi:10.1038/d41586-019-03417-3Treatment options are limi [...]

Nature, Published online: 13 November 2019; doi:10.1038/d41586-019-03445-zGovernments worldwide must [...]

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio [...]

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a [...]

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur [...]

Sismografo Live

Sismi Italia tempo reale

Terremoti Importanti

Aggiornato Gio 14 Nov 06:20:17 (GMT+0200)

NASA TV

SPACE X

Seguici su Facebook

Facebook Pagelike Widget

I più letti