Contattaci

Fisica

Vivere vicino a un buco nero supermassiccio

In linea teorica, intorno ai buchi neri – compresi quelli supermassicci che si trovano al centro della maggior parte delle galassie – potrebbero esistere dei pianeti, e persino dei pianeti che ospitano forme di vita. Sarebbe pericoloso, ovviamente, ma potrebbe anche essere divertente!

Pubblicato

il

Cortesia NASA/JPL-Caltech

Fin dagli anni novanta sappiamo che ci sono pianeti intorno alle pulsar, oggetti straordinariamente densi nati da violente esplosioni delle stelle. È quindi ragionevole supporre che i pianeti possano esistere anche intorno ai buchi neri: i quali, e questo forse sorprenderà molte persone, in effetti hanno un impatto sull’ambiente molto più debole rispetto alle pulsar.

È anche possibile che su alcuni di questi pianeti si possa formare la vita, dato che sulla Terra gli organismi si sono adattati a condizioni estreme, tra cui calore estremo, freddo gelido, ambienti acidi, altamente salati e persino radioattivi.

Pianeti abitati potrebbero esistere vicino ai buchi neri supermassicci che si trovano al centro della maggior parte delle galassie. La nostra galassia, la Via Lattea, ospita un buco nero la cui massa è pari a quella di quattro milioni di stelle. Conosciuto come Sgr A* (Sgr sta per Sagittarius), la sua orbita circolare stabile più interna (ISCO, Innermost stable circular orbit) ha approssimativamente le dimensioni dell’orbita di Mercurio intorno al nostro Sole.

Allora, come sarebbe la vita su un pianeta del genere?

Prima di affrontare i molti rischi per la salute della vita in prossimità di un buco nero, dovremmo considerare i benefici. Se le civiltà si formano o migrano nelle vicinanze dei buchi neri, cosa potrebbero fare per divertimento e per profitto? Mi vengono in mente le seguenti 10 attività principali:

– Usare il buco nero come fonte di energia pulita scaricando rifiuti attraverso il disco di accumulazione della materia che gli gira intorno. Nel caso di un buco nero che ruoti molto velocemente, sarebbe possibile convertire in radiazione fino al 42 per cento della massa a riposo di questo “cestino della spazzatura”, purché sia situato in corrispondenza dell’orbita circolare stabile più interna.

– Accoppiare qualche dispositivo ingegnerizzato allo spin del buco nero, come un gigantesco volano da cui poter ricavare l’energia di spin.

– Navigare con vele a radiazione su jet relativistici a velocità che si avvicinano a quelle della luce.

– Prolungare la giovinezza visitando saloni di bellezza prossimi all’orizzonte del buco nero, dove il tempo scorre più lentamente a causa del redshift gravitazionale.

– Vedere lo spettacolo dell’intero universo come immagine riflessa e distorta delle lenti gravitazionali intorno al buco nero.

– Installare un parco giochi presso la cosiddetta “sfera fotonica”, dove ci si può divertire con effetti relativistici, come vedersi da dietro guardando dritto in avanti mentre la luce gira intorno al buco nero.

– Sfruttare nuove opportunità per i viaggi spaziali. Per esempio, quando tra miliardi di anni la Via Lattea e la sua galassia sorella Andromeda si fonderanno, i due buchi neri al loro centro si accoppieranno in uno stretto sistema binario, che dovrebbe agire come una fionda gravitazionale ed espellere stelle o pianeti alla velocità della luce. Le agenzie di viaggio possono offrire biglietti per corse eccezionali su pianeti espulsi che attraversano l’intero universo.

– Usare il buco nero come la prigione definitiva, condannando i criminali al confino e alla morte nella singolarità. La massa del buco nero determinerebbe il tempo che rimane da vivere ai prigionieri. Minore è il loro crimine, più massiccio dovrebbe essere il buco nero, permettendo di allungare la vita residua dei criminali una volta attraversate le “pareti della prigione” costituite dall’orizzonte del buco nero.

– Utilizzare per le comunicazioni le onde gravitazionali provenienti da piccoli oggetti in orbita intorno al buco nero. Quei segnali non possono essere bloccati da alcuna forma nota di materia.

– Testare aspetti fondamentali della gravità quantistica attraverso viaggi organizzati di scienziati sperimentali esperti in fisica delle stringhe.

Il pericolo principale per gli astronauti che tentano di eseguire queste attività deriva dalle maree gravitazionali. Come ha notato Albert Einstein nel suo famoso esperimento mentale, a chi si trova all’interno di un ascensore o di una navicella spaziale in caduta libera sembra di non avere alcuna gravità. Ma qualsiasi differenza nell’accelerazione gravitazionale tra la testa e le dita dei piedi, che misura la curvatura dello spazio-tempo, potrebbe strappare il corpo.

Quelle maree imporrebbero una condanna a morte nelle vicinanze di un buco nero di massa stellare, ma non rappresentano una minaccia per il corpo umano nell’ambiente molto più esteso intorno a un buco nero supermassiccio, come Sgr A*.

Un sistema binario dibuchi neri. (Cortesia NASA)

 

Di conseguenza, la densità della materia necessaria per fare un buco nero si scala linearmente con la sua curvatura spaziotemporale. I buchi neri di bassa massa si formano attraverso il collasso del nucleo di una stella massiccia a densità di gran lunga superiori a quelle di un nucleo atomico. Ma per fare un buco nero supermassiccio, che è molto più rarefatto, è sufficiente riempire l’orbita di Giove con acqua liquida.

Per quanto semplice possa sembrare questo progetto di ingegneria, non è affatto pratico, poiché richiede circa 100 milioni di masse solari di acqua. E il calore generato durante il versamento dell’acqua brucerebbe tutti gli impianti associati.

Infatti, il calore liberato dai buchi neri supermassicci costituisce una minaccia esistenziale per le civiltà che risiedono vicino ai centri delle galassie. In un articolo con John Forbes, abbiamo dimostrato che una frazione significativa di tutti i pianeti dell’universo è vulnerabile alla perdita delle loro atmosfere o alla bollitura dei loro oceani per il fatto di essere stati vicini a un nucleo galattico attivo durante la loro vita.

Per la prima volta nella storia dell’umanità, ora abbiamo la tecnologia per raffigurare le sagome dei buchi neri supermassicci al centro della Via Lattea e della galassia ellittica gigante M87 sullo sfondo del gas incandescente alle loro spalle. Le prime immagini di questo tipo dovrebbero essere pubblicate entro la fine dell’anno.

In una conferenza al convegno del 2018 della Black Hole Initiative di Harvard, un centro interdisciplinare dedicato allo studio dei buchi neri, ho suggerito che i futuri progressi nella propulsione spaziale potrebbero permetterci di organizzare una gita verso un buco nero vicino. Questa sarà una grande opportunità per dedicarsi ad alcune delle suddette attività, e forse anche per scambiare informazioni sulla gravità quantistica con un turista di altre civiltà che potrebbe essersi già accampato là fuori.


(L’originale di questo articolo è stato pubblicato su “Scientific American” l’11 marzo 2019



Licenza Creative Commons




Crediti :

le Scienze

Detective presso Computer Crime Research Center. Investigazioni Roma. Ingegneria Elettronica e delle Telecomunicazioni Seminario Analisi del Crimine Violento Università di Roma

Continua a leggere
Clicca per commentare

Leave a Reply

Per commentare puoi anche connetterti tramite:



Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Fisica

Da una pulsar binaria un’altra conferma alla teoria di Einstein

Una nuova osservazione ha confermato l’effetto Lense-Thirring, un effetto di trascinamento dello spazio-tempo da parte delle masse in rotazione previsto dalla teoria della relatività generale: si tratta in questo caso di un sistema binario di stelle massicce, che emette radiazione elettromagnetica pulsata. E’ la prima verifica del fenomeno ottenuta con un sistema di tipo stellare

Pubblicato

il

Ilustrazione dell'effetto Lense-Thirring misurato nello studio (©Mark Myers, OzGrav ARC Centre of Excellence)

L’ennesima conferma sperimentale della teoria della relatività generale di Einstein viene dallo studio di una pulsar, un sistema binario di stelle massicce che emette una radiazione pulsante, condotto da Matthew Bailes,dell’ARC Centre of Excellence of Gravitational Wave Discovery (OzGrav) e colleghi, che firmano un articolo su “Science”.

Uno dei fondamenti di questa teoria è che le tre dimensioni spaziali e la dimensione temporale sono considerate un tutt’uno, uno spazio-tempo quadridimensionale. E lo spazio-tempo viene deformato dalle masse proporzionalmente alla loro entità. Si può immaginare questo effetto pensando a una palla da biliardo posata sul lenzuolo steso su un letto. Se poi si posa sul lenzuolo una seconda massa, una palla da golf per esempio, quest’ultima si avvicinerà alla prima cadendo nella deformazione che ha creato. Questo è in sintesi il modello della gravitazione rappresentato dalla teoria einsteiniana, pubblicata nel 1916.

Già qualche anno dopo, due matematici austriaci josef Lense e Hans Thirring, trovarono un’interessante conseguenza della relatività generale. Secondo le leggi contenute nella teoria, una massa in rotazione su se stessa avrebbe dovuto trascinare con sé lo spazio-tempo, con un effetto lieve ma comunque rilevabile, in linea di principio.

Il fenomeno, chiamato effetto Lense-Thirring, o effetto di trascinamento, è stato rilevato sperimentalmente negli anni 2000 per quanto riguarda l’ambiente intorno alla Terra grazie ai satelliti LAGEOS, anche se con un’incertezza sperimentale ancora non soddisfacente, considerata anche l’esiguità della massa del nostro pianeta. In questi casi, si misura il fenomeno di precessione dell’asse di rotazione giroscopi dei satelliti, dovuto proprio all’effetto Lense-Thirring.

Il trascinamento è però molto più evidente nel caso di oggetti molto massicci che si trovano nel cosmo. L’ha dimostrato nel 2016 un gruppo internazionale di ricerca guidato da Adam Ingram, dell’Università di Amsterdam, nel caso del disco di accrescimento di un buco nero indicato dalla sigla H1743-322, grazie alle osservazioni condotte con i telescopi spaziali per raggi X XMM-Newton dell’ESA e NuSTAR della NASA.

Quasi 20 anni fa, il gruppo di Bailes iniziò ad osservare con il radiotelescopio CSIRO Parkes 64 un sistema binario chiamato PSR J1141-6545, formato da due stelle che ruotano l’una attorno all’altra a velocità sorprendenti. Uno dei due oggetti è una nana bianca, delle dimensioni della Terra ma 300.000 volte più densa. L’altra è una stella di neutroni che, con un diametro di soli 20 chilometri, è circa 100 miliardi di volte la densità della Terra. Ciò significa che l’effetto Lense-Thirring è 100 milioni di volte più intenso, e rappresenta quindi un’occasione unica per studiare gli effetti della relatività generale.

Dato il rapido regime di rotazione, i sistemi binari di questo tipo appaiono come una radiazione elettromagnetica pulsata, e vengono anche indicati per questo pulsar. Misurando con estrema precisione la frequenza di pulsazione, gli astrofisici possono ricavare i parametri orbitali del sistema, e da ciò calcolare la precessione del loro asse di rotazione. Dopo aver eliminato tutti i possibili fattori che possono influenzare questa precessione, Bailes e colleghi hanno misurato il contributo relativistico, risultato in buon accordo con le previsioni della teoria di Einstein. Il successo della ricerca, sottolineano gli autori, è che si tratta della prima conferma dell’effetto di Lense-Thirring ottenuta con un sistema di tipo stellare.



Licenza Creative Commons




Crediti :

le Scienze

Continua a leggere

Fisica

Come estrarre ossigeno dalla polvere lunare

L’Agenzia spaziale europea è riuscita nell’impresa: ha creato un prototipo di impianto di estrazione dell’ossigeno dalle polveri lunari. Un passo importante per futuri viaggi spaziali e per aumentare la durata della permanenza umana sul satellite

Pubblicato

il

Rappresentazione artistica di una possibile base di attività sulla Luna (foto: Esa)

Ormai è certo: nel 2024 torneremo sulla Luna ed ora è aperta la caccia ai turisti dello spazio che accompagneranno il primo privato cittadino che andrà sulla Luna, il milionario giapponese Yusaku Maezawa. Ma i motivi per studiare la luna e la sua composizione sono tanti e non riguardano solo i viaggi spaziali. L’Agenzia spaziale europea (Esa) ha già pianificato una missione che avrà l’obiettivo di studiare la possibilità di riuscire a estrarre alcuni elementi, come ossigeno e acqua, naturalmente presente nel suolo, o meglio nella regolite, una sorta di polvere che ricopre la Luna. Oggi, l’Esa informa che ha messo a punto un prototipo per estrarre l’ossigeno dalle polveri lunari. Ecco perché è un risultato importante.

Polveri lunari per ottenere ossigeno

La regolite è un materiale granuloso presenti sul suolo lunare – e non solo, si trova anche sulla Terra, su Marte, su altri pianeti, asteroidi e lune. Questo materiale è composto da polveri, detriti, frammenti di rocce e gas, e si è formata in seguito all’impatto di meteoroidi piccoli e spessi, al bombardamento costante di frammenti di materiale celeste. I campioni lunari riportati a terra dalle missioni hanno mostrato che questa polvere è abbondante e per questo sceglierla come candidato per produrre ossigeno potrebbe essere una scelta valida.

Poter ottenere ossigeno dalle polveri lunari potrebbe favorire i futuri viaggi e la nostra permanenza sulla Luna, un tema sempre più attuale. Per questo gli scienziati si sono già messi all’opera e un gruppo guidato dall’università di Glasgow ha recentemente spiegato come procedere.

Un nuovo impianto

Oggi l’Esa annuncia di aver messo a punto un impianto per estrarre l’ossigeno dalle polveri lunari. “Avere la nostra strumentazione ci permette di concentrarci sulla produzione di ossigeno”, commenta Beth Lomax dell’università di Glasgow, “misurandolo con uno spettrometro di massa non appena estratto dal ‘simulante’ di regolite”. Il simulante di regolite è un materiale terrestre che serve per creare un composto quanto più possibile somigliante alla regolite e che è utile per gli esperimenti e per studiare le possibili condizioni di permanenza sulla luna.

L’estrazione dell’ossigeno dalla polvere di Luna

Inizialmente l’ossigeno generato nel processo veniva rilasciato come biossido di carbonio e monossido di carbonio. “Questo significa che i reattori non sono progettati per resistere all’ossigeno stesso”, spiega Lomax, che racconta che gli scienziati hanno riprogettato una nuova versione per avere ossigeno libero da misurare. Il nuovo impianto è anche silenzioso e l’ossigeno viene scaricato in un tubo apposito. Verrà poi accumulato non appena i ricercatori realizzeranno il prossimo aggiornamento delle apparecchiature.

Per ottenere l’ossigeno i ricercatori si sono serviti dell’elettrolisi per separare l’idrogeno e l’ossigeno che compongono una molecola d’acqua. Il tutto avviene attraverso la presenza di cloruro di calcio, che funge da elettrolita, riscaldato a 950 °C. La separazione è avvenuta e l’ossigeno è stato estratto.

“Il processo di produzione lascia dietro di sé un groviglio di metalli diversi”, aggiunge Alexandre Meurisse, ricercatore dell’Esa, “e questa è un’altra linea di ricerca importante per vedere quali sono le leghe più utili che potrebbero essere prodotte a partire dal materiale e quali applicazioni potrebbero avere”. La precisa combinazione di metalli, specifica l’esperto, potrebbe dipendere dal punto in cui vengono raccolte le polveri lunari, dato che ci potrebbero essere importanti differenze.

Verso la Luna e Marte

L’obiettivo finale, concludono i ricercatori, potrebbe essere realizzare un impianto simile direttamente sulla Luna, così da avere direttamente ossigeno disponibile. “Stiamo spostando il nostro approccio ingegneristico verso la possibilità di un uso sistematico delle risorse lunari in situ”, conclude Tommaso Ghidini dell’Esa, “per fornire un metodo operativo ideale e tecnologie essenziali come questa, affinché sia possibile la presenza umana sulla Luna e un giorno forse anche su Marte.



Licenza Creative Commons




Crediti :

wired

Continua a leggere

Fisica

Arriva il primo “robot vivente”, creato con cellule staminali

Deriva da cellule staminali di rana, il nuovo robot vivente non è né una macchine tradizionale né una nuova specie animale. Ecco cos’è e perché potrebbe essere molto utile in medicina e per combattere l’inquinamento

Pubblicato

il

In futuro i robot saranno sempre più spesso ispirati alle nostre caratteristiche biologiche. Ma oggi il mondo delle tecnologie ci stupisce con una proposta finora inedita: un gruppo di ricerca ha creato un nuovo prototipo che non solo prende ispirazione dalla biologia ma che  è interamente costituito da materiale biologico. I creatori, dell’università del Vermont e di Tuft, parlano per questo di robot vivente, primo nel suo genere, una macchina minuscola, per niente somigliante all’idea che abbiamo di robot – quella dell’automa. Le applicazioni potrebbero riguardare diversi campi, dalla ricerca delle contaminazioni radioattive ad usi clinici. I risultati sono pubblicati su Proceedings of the National Academy of Sciences.

Negli anni scorsi ci sono stati dei tentativi anche di successo di creare organismi viventi semi-sintetici. In questo caso parliamo di un oggetto molto diversi, come spiegano gli scienziati, che hanno progettato e realizzato la “prima macchina biologica interamente messa su a partire dal nulla”, o meglio da cellule. I ricercatori la hanno chiamata xenobot perché deriva dall’elaborazione di cellule staminali della rana africana Xenopus laevi, spesso utilizzata come modello animale nella ricerca in biologia. “Il dna dell’organismo realizzato è al 100% quello della rana”, specifica Michael Levin, uno dei due coordinatori dello studio, ricercatore all’università di Tuft, “ma non è una rana”“Non sono né robot tradizionali né nuove specie animali”, sottolineano i ricercatori, che chiariscono che si tratta di nuova classe di artefatti, oggetti artificiali che sono organismi viventi e programmabili.

Gli scienziati hanno progettato i nuovi robot con i supercomputer dell’università del Vermont e poi li hanno assemblati e testati all’università Tuft. Prima hanno prelevato le cellule staminali dagli embrioni di rana, separate in singole cellule e fatte crescere in laboratorio, in una sorta di incubatrice per farle moltiplicare e differenziare in tessuti diversi. Successivamente le hanno tagliate e aggiuntate attraverso l’uso di un microscopio per ottenere il design desiderato, selezionato col computer. In questo modo, si sono formate delle cellule dalla forma inedita in natura che hanno cominciato a funzionare e lavorare insieme. Qui il video.

La loro forma è quasi sferica. La pelle ha un’architettura abbastanza statica, mentre il muscolo cardiaco è più attivo: le sue contrazioni sono tali da generare movimenti ordinati, che seguono quanto scelto in base alla progettazione del computer. In pratica si tratta di materia vivente assemblata e programmata per lavorare in un determinato modo, selezionato dagli autori.

I risultati mostrano che questi organismi si muovono in modo coerente e che possono spostarsi e sondare l’ambiente acquoso in cui si trovano per giorni o settimane. Tuttavia, anche loro falliscono: se si ribaltano somigliano a coleotteri capovolti che non sono più in grado di muoversi. Inoltre, gli autori hanno osservato che si spostano creando un cerchio e alcuni sono stati progettati per creare una struttura con un buco al centro. “È un passo avanti verso l’uso di organismi creati dal computer per l’invio intelligente di farmaci”, ha spiegato Joshua Bongard dell’università del Vermont, che sottolinea che sono completamente biodegradabili e una volta aver assolto al loro compito, dopo una settimana, sono solo cellule di pelle morta.

Ma molti sono preoccupati dei possibili sviluppi. “Questa paura non è irragionevole”, aggiunge Levin. E “questo studio fornisce un contributo diretto per comprendere meglio ciò di cui le persone hanno paura, ovvero le conseguenze indesiderate”. Se inizieremo a manipolare sistemi complessi che non conosciamo, spiega l’esperto, potremmo avere esiti inattesi e non desiderati. Per questo capire in che modo la complessità emerge da sistemi semplici sarà una sfida fondamentale del futuro.



Licenza Creative Commons




Continua a leggere

Chi Siamo

Vuoi ricevere le notizie?

Dicono di noi

DAL MONDO DELLA RICERCA

  • Le Scienze
  • Nature (EN)
  • Immunologia

Comunicato stampa - Una pellicola sottilissima e biodegradabile in grado di rivestire volumi di acqu [...]

Comunicato stampa - Un nuovo strumento bioinformatico individua rapidamente le alterazioni del genom [...]

Comunicato stampa - Individuate le relazioni causa-effetto che hanno determinato lo sciame simico du [...]

Nature, Published online: 03 April 2020; doi:10.1038/d41586-020-00998-2But some experts say author S [...]

Nature, Published online: 03 April 2020; doi:10.1038/s41586-020-2203-2Author Correction: Self-verify [...]

Nature, Published online: 03 April 2020; doi:10.1038/d41586-020-01027-yStaying at home is not an opt [...]

Comunicato stampa - Lo rivela uno studio condotto dal Cnr-Ibcn in collaborazione con il laboratorio [...]

Una molecola che si trova nei vasi sanguigni e interagisce con il sistema immunitario contribuisce a [...]

Comunicato stampa - Uno studio internazionale pubblicato su The Lancet mette in discussione la sicur [...]

Sismografo Live

Sismi Italia tempo reale

Terremoti Importanti

Aggiornato Sun 5 Apr 12:45:04 (UTC)

NASA TV

SPACE X

Archivio

LunMarMerGioVenSabDom
 12345
6789101112
13141516171819
20212223242526
27282930 

 

 

 

 

 

I più letti